Code: AE77/AC77

Subject: DIGITAL SIGNAL PROCESSING

AMIETE - ET/CS (NEW SCHEME)

Time: 3 Hours

JUNE 2012

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. In the Fourier transform of a real signal, the magnitude function is
 - (A) symmetric

(B) anti-symmetric

(C) recursive

- (D) scaling
- b. The estimate of power density spectrum is known as
 - (A) Auto correlation
- (B) Randomo graph

(C) spectrogram

- (**D**) periodogram
- c. In radix 2-FFT algorithm, the value of N is
 - (A) 2 m

(B) 2^{m}

(C) $(2)^{1/m}$

- **(D)** 2/ m
- d. In sampling of x (w), the value of sample at w = 0 is same as value of sample at w equal to
 - **(A)** $\pi / 2$

(B) 2π

(C) π

- **(D)** $2\pi/3$
- e. An analog signal has the spectrum shown in Fig.1. The minimum sampling rate in kHz needed to completely represent this signal is

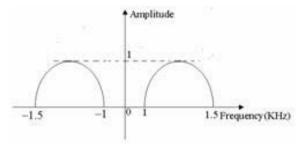


Fig. 1

(A) 3

(B) 2

(C) 1

(D) 0.5

ROLL N	NO	 	

Code: AE77/AC77 Subject: DIGITAL SIGNAL PROCESSING

	f.	The number of computations require	red in DIT is as that of D	_ as that of DIF.		
		(A) different(C) same	(B) additional data is required(D) double			
	g.	The ideal filter is always				
		(A) causal(C) inverse	(B) non-causal(D) transpose			
	h.	a. In Kaiser Window, the peak side-lobe is but the width of main-lobe is, respectively.				
		(A) variable, variable(C) fixed, fixed	(B) fixed, variable(D) variable, fixed			
	i. The two types of error produced by A/D conversion are					
		(A) quantization and rounding(C) quantization, saturation	(B) rounding, saturation(D) rounding, adaptive			
	j. The DFT of finite length sequence $x(n) = \delta(n)$ is					
		(A) 0 (C) z^{-1}	(B) 1 (D) W _N			
		Answer any FIVE Question Each question c	_			
Q.2	a.	Explain the reconstruction of a bar	nd-limited signal from its samples.	(8)		
	b.	period of T to obtain a discrete tir (i) Determine a choice of T consi				
Q.3	a.	Discuss the phase distortion an response.	d group delay with respect to LTI	system's (8)		
	b.	Consider a causal system whose in	aput and output satisfy the difference eq	uation		
		y(n)-a y(n-1) = x(n). (i) Find H(z), ROC and condition (ii) Plot detailed pole-zero diagramation (iii) Find impulse response. (iv) Given system is IIR or FIR.	m.	(0)		
		• /		(8)		

ROLL N	0.
	~ ·

Code: AE77/AC77

Subject: DIGITAL SIGNAL PROCESSING

- b. With the help of signal flow graph, discuss the structure of Linear-Phase FIR system. (8)
- Q.5 a. Discuss the utility of the Parks –McClellan algorithm. (6)
 - b. Design a Butterworth low-pass filter using Impulse Invariance concept for the following specifications:

 $0.9 \le |H(e^{jw})| \le 1, \quad 0 \le |w| \le 0.2 \pi$ $|H(e^{jw})| \le 0.18, \quad 0.3 \pi \le |w| \le \pi.$

Assume $T_d = 1$. Also, assume additional data if required.

- **Q.6** a. State and prove the following properties of DFT.
 - (i) Linearity

(ii) Duality

(iii) Symmetry

(iv) circular shift of a sequence. (8)

b. For a delayed impulse sequence $x_1(n) = \delta$ (n-1) and x_2 $(n) = \{ \underline{5}, 4, 3, 2, 1, 0 \}$ is given. Obtain circular convolution using

- (i) Graphical Method and
- (ii) Using DFT and IDFT method.

(8)

(10)

Q.7 a. Explain Goertzel Algorithm and its application.

- (8)
- b. Develop Decimation in Time algorithm for N=4 and draw signal flow graph.

(8)

Q.8 a. Explain properties of periodogram.

- (8)
- b. Write short note on Block convolution using the time dependent Fourier transform. (8)
- **Q.9** a. Using Hilbert Transform, find relationship between magnitude and phase. (8)
 - b. For a real, causal sequence x(n) for which the real part of the DTFT, is X_R (e ^{jw}) = (1-α cos w) / (1-2α cos w+ α²) with |α| < 1. Determine the original sequence x(n), X(e ^{jw}) and X(z).