ROLL NO. _

Code: AE74

Time: 3 Hours

Subject: VLSI DESIGN

AMIETE – ET (NEW SCHEME)

JUNE 2012

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. Channel exists between source and drain without gate voltage is

(A) Enhancement type MOS	(B) Depletion type MOS
(C) BiCMOS	(D) CMOS

b. Limitation of MOS Technology is

(A) High power dissipation	(B) Compactness
(C) Load driving capability	(D) High Noise margin.

c. Electron Transit time T_{sd} is inversely proportional to

(A) V_{gs}	(B) V _{ds}
(C) L	(D) E _{ds}

d. The constant term K in I_{ds} expression is determined by

(A)
$$\frac{\epsilon_{\text{ins}} \epsilon_0 \text{ WL}}{D}$$
 (B) $\frac{\epsilon_{\text{ins}} \epsilon_0}{D}$
(C) $\epsilon_{\text{ins}} \epsilon_0 \frac{\text{W}}{\text{L}}$ (D) $\frac{\epsilon_{\text{ins}} \epsilon_0}{D} \mu$

e. Figure of merit ω_0 is directly proportional to

(A) Width of channel	(B) Length of channel
(C) Mobility of electron/hole	(D) Electron Transit term

1

				ROLL NO
	С	ode: AE74	Subject: V	VLSI DESIGN
	f.	Pull-up to pull-down ratio for an inverter is	nMOS inverter	driven by another nMOS
		(A) 6:1(C) 16:1	(B) 8:1 (D) 4:1	
	g.	g. Latch-up in CMOS can be reduced by		
		(A) Increasing substrate doping level (B) Decreasing substrate doping level (C) Increasing the value of R_s (D) Increasing the value of R_p		
	h.	h. Minimum spacing between two diffusion layer is		
		 (A) 1λ (C) 3λ 	 (B) 2λ (D) 4λ 	
	i.	nMOS inverter with 4:1 Z_{pu} / Z_{pd} masses and Z_{pd}	ratio has V _{DD} to	G _{ND} ON resistance
		(A) 10K (C) 50K	(B) 40K (D) 90K	
	j.	. Total delay of cascaded CMOS inverter for N even is		
		(A) 3.5 Ne (C) 5 Ne	(B) 2.5 Ne (D) 7 Ne	
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.				
Q.2	a.	a. With neat diagram explain Three modes of operation of nMOS enhancement mode Transistor (8)		
	b.	With neat sketch explain the CMOS	N-well Fabricati	on process. (8)

- Q.3 a. Derive an expression for Pull-up to Pull-down ratio for an n-MOS inverter driven by another n-MOS inverter. (8)
 - b. Draw CMOS inverter circuit. Also compare CMOS & Bipolar transistor parameter. (8)
- Q.4 a. Write circuit and Stick diagram for (8) (i) 2 I\P CMOS NOR gate (ii) 2 I\P EXOR gate using CMOS
 - b. Briefly explain λ based design rules for

 (i) Transistor
 (ii) Wire

			ROLL NO	
	С	ode: AE74 Subject: V	VLSI DESIGN	
Q.5	a.	Define sheet resistance and standard unit of capacitar	ice	(4)
	b.	Calculate R_{on} and C_g of a n-MOS inverter interms of	$f R_s$ and C_g respecti	vely.
		Assume $\frac{Z_{pu}}{Z_{pd}} = 4:1$.		(4)
	c.	Write a short note on driving large capacitive loads.		(8)
Q.6	a.	Obtain Scaling factor for(i) Gate capacitance(ii) Frequency(iii) Power dissipation(iv) Current dive	ersity	(10)
	b.	Design 4:1 MUX using Transmission gate.		(6)
Q.7	a.	Design 4×4 crossbar switch using MOS switch.		(8)
	b.	Implement adder element logic circuit using n-Switch	n based Multiplexer.	(8)
Q.8	a.	Draw the structure of Six- transistor static CMOS m Read and Write operations.	emory-cell and expla	ain it's (10)
	b.	Discuss about Ground rules for successful design of	VLSI chip.	(6)
Q.9	a.	Explain briefly various design styles used in VLSI de	sign.	(6)
	b.	Define Controllability and observability.		(4)
	c.	Write Sequential logic circuit containing scan path operation briefly.	for testing and expl	ain its (6)