ROLL NO.

Code: AE63 Subject: ELECTROMAGNETICS & RADIATION SYSTEMS

AMIETE – ET (NEW SCHEME)

Time: 3 Hours

JUNE 2012

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. Force between two point charges q_1 and q_2 situated at point A and B respectively separated by a distance d can be expressed as

(A)
$$F_A = \frac{Kq_1q_2}{d^2} i_{BA}$$
 (B) $F_A = \frac{Kq_1q_2}{d}$
(C) $F_A = \frac{Kq_1q_2}{d^2}$ (D) $F_A = \frac{Kq_1q_2}{d} i_{BA}$

b. The equation \triangle .J = 0 is called

(A) Laplacian equation	(B) Kirchoff's node equation
(C) Poisson's equation	(D) Continuity equation for discrete
	currents

c. Ohm's law relates the current density J with field intensity E as

(A) J= <i>o</i> E	$(\mathbf{B}) \mathbf{J} = \boldsymbol{\sigma}^2 \mathbf{E}$
(C) $J = \frac{E}{\sigma}$	(D) $J = \frac{E^2}{\sigma}$

d. Intrinsic or Characteristic impedance of free space has a value of

(A) 120π ohm	(B) π ohm
(C) 73 ohm	(D) 73 m ohm

e. An electric field of 50 V/m has the charge of 0.3 μ C, what is the force on that charge.

(A) 15 µ N	(B) 12.5 µ N
(C) 18 µ N	(D) 10.5 µ N

1

ROLL NO.

Code: AE63 Subject: ELECTROMAGNETICS & RADIATION SYSTEMS

f. The attenuation in a wave guide near the cut-off frequency is

(A) High	(B) Low
(C) Zero	(D) Negative

g. Select the Equation which is not Maxwell's

$(\mathbf{A}) \nabla \mathbf{B} = 0$	$(\mathbf{B}) \nabla \mathbf{D} = \rho$
(C) $\nabla E = -B$	(D) $\nabla \times \mathbf{H} = \mathbf{J} + \dot{\mathbf{D}}$

h. Troposphere scatter is used with frequencies in the following range.

(A)	HF	(B) VHF
(C)	UHF	(D) VLF

i. Indicate the antenna that is not wideband

(A) Discone	(B) Folded dipole
(C) Helical	(D) Marconi

j. Cassegrain feed is used with a parabolic reflector to

- (A) increase the gain of system
- (B) increase bandwidth

(C) reduce the size of main reflector

(D) allow the feed to be placed at a convenient point.

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	State and explain Coulomb Law and derive electric field intensity discrete charges.	/ for n (10)
	b.	Find the force on a unit (+ve) charge at p on x-axis (2, 0), due to 1×10^{-9} origin and -2×10^{-9} C at (1, 0).	0 ⁻⁹ C at (6)
Q.3	a.	Explain the concept of current density and derive Continuity equation.	(6)
	b.	In a certain region the electric scalar potential is given by $V = x^2 + 3y^2 + 9z$	
		Find the value of electric field at point P $(1,-2,1)$.	(10)
Q.4	a.	State and derive the Uniqueness theorem.	(10)
	b.	Derive Laplace's equation in rectangular co-ordinates.	(6)
Q.5	a.	State and prove Biot-Savart Law.	(8)
	b.	State and prove Stoke's theorem.	(8)

Code: AE63 Subject: ELECTROMAGNETICS & RADIATION SYSTEMS

Q.6	a.	 Explain the concept of force on a moving charge and derive the Lorentz for equation. (1) A solenoid of 20 cm long and 1 cm diameter has 100 turn winding. If this placed in uniform magnetic field of strength 2Wb/m² and current of 10 at flows through it, calculate the maximum torque on solenoid. (4) 		
	b.			
Q.7	a.	Derive the continuity equation for time varying fields. (8))	
	b.	Write Maxwell's equations in point and in integral form. (8))	
Q.8	a.	Define the following:(i) Critical Frequency(ii) Virtual height(iii) MUF(iv) Skip distance)	
	b.	Electromagnetic waves are said to be transverses; what does this mean? (6))	
	c.	Determine the length of antenna operating at a frequency of 800 KHz. Tak velocity factor as 0.95. (2)	te)	
Q.9	a.	With reference to the Antenna, define the following terms.(i) Directive gain(ii) Directivity and power gain(iii) Antenna losses(iv) Polarization(v) Phased Array(10))	
	b.	What is parabola? With sketches, show why its geometry makes it a suitable	e	

b. What is parabola? With sketches, show why its geometry makes it a suitable basis for antenna reflectors? (6)