ROLL NO.

 (2×10)

Code: AE61

Subject: CONTROL ENGINEERING

AMIETE - ET (NEW SCHEME)

JUNE 2012

Time: 3 Hours

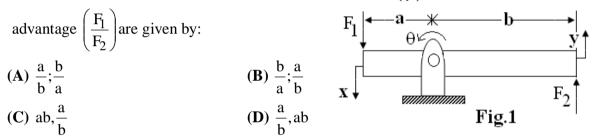
Max. Marks: 100 PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE OUESTION PAPER.

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or the best alternative in the following: 0.1

a. For an ideal lever shown in Fig.1, the displacement ratio and the force



- b. For repetitive and/or hazardous tasks to be carried out at great speed and high precision, we use:
 - (A) control systems
- (**B**) servomechanisms
- (C) robotics (**D**) mechanical system
- c. If charge in electrical system is analogous to heat flow in thermal system, then current and voltage represent respectively:
 - (A) temperature and heat flow rate
 - (B) heat flow rate and temperature
 - (C) thermal resistance and thermal capacitance
 - (**D**) thermal capacitance and thermal resistance

d. The system sensitivity
$$S_K^T$$
 to feedback gain K in $T = \frac{A}{1 + KA}$, $A = 10^4$, $K = 0.1$,

(A)
$$-0.01$$
(B) -0.1 (C) 1(D) -1

e. In the signal-flow graph shown in Fig.2 with an input disturbance torque $T_D(s)$

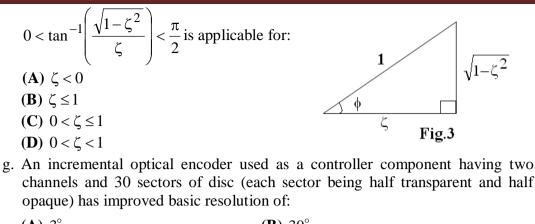
and
$$|G_1(s)G_2(s)H(s)| >> 1$$
, the ratio $\left(\frac{C_D(s)}{T_D(s)}\right)$ is given by:
(A) $\frac{-G_2(s)}{G_1(s)H(s)}$ (B) $\frac{-1}{G_1(s)H(s)}$ (B) $\frac{-1}{G_1(s)H(s)}$ (B) $\frac{-1}{G_1(s)H(s)}$ (B) $\frac{-1}{G_1(s)H(s)}$ (C) $\frac{G_1(s)+G_2(s)}{G_1(s)G_2(s)H(s)}$ (D) $\frac{-G_1(s)+G_2(s)}{G_1(s)G_2(s)H(s)}z$ (C) $\frac{-G_1(s)+G_2(s)}{G_1(s)G_2(s)H(s)}z$ (C) $\frac{-G_1(s)+G_2(s)}{G_1(s)G_2(s)H(s)}z$ (C) $\frac{-G_1(s)+G_2(s)}{G_1(s)G_2(s)H(s)}z$ (C) $\frac{-G_1(s)+G_2(s)}{G_1(s)G_2(s)H(s)}z$ (C) $\frac{-G_1(s)+G_2(s)}{G_1(s)G_2(s)H(s)}z$ (C) $\frac{-G_1(s)+G_2(s)}{G_1(s)G_2(s)H(s)}z$

f. With reference to Fig.3, where $\zeta = \cos \phi$ is the damping factor

Code: AE61

Subject: CONTROL ENGINEERING

ROLL NO.



(A)
$$3^{\circ}$$
 (B) 30°

(**C**)
$$300^{\circ}$$
 (**D**) 360°

h. If all the roots of the system $s^3 + 7s^2 + 25s + 39 = 0$ are to have real parts more negative than -1, then to check the relative stability, we should consider modified characteristic equation:

(A)
$$z^3 - 3z^2 - 14z + 39 = 0$$

(B) $z^3 + 4z^2 + 14z + 20 = 0$
(C) $z^3 + 7z^2 + 28z + 14 = 0$
(D) $z^3 + 4z^2 + 11z + 13 = 0$

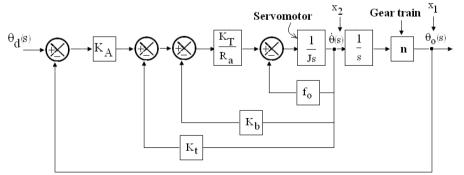
i. For the system $G(s) = \frac{9.7}{s(0.046s+1)}$, at the corner frequency the value of $\langle G(i\omega) \rangle$ is:

(A)
$$-135^{\circ}$$
 (B) -90°
(C) -45° (D) 0°

j. If $\mathbf{r}(\mathbf{t})$ is the input and $\mathbf{x}_{1,2}$ are state-variables of the system $\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -100 & -20 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 100 \end{bmatrix} \mathbf{r}$, then its characteristic equation is: (A) $\mathbf{s}^2 + \mathbf{s} + 100 = 0$ (B) $\mathbf{s}^2 + \mathbf{s} + 20 = 0$ (C) $\mathbf{s}^2 - 20\mathbf{s} - 100 = 0$ (D) $\mathbf{s}^2 + 20\mathbf{s} + 100 = 0$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Define the terms:(i) Coulomb friction force (ii) Viscous friction force (iii) Stiction. Why is friction not always undesirable in physical systems? Explain the use of friction in the construction of the dashpot. (3+2+3)
 - b. The block-diagram of a speed control system is shown in Fig.4. Define the state variables and write the state and output equations of the system in vector-matrix form.



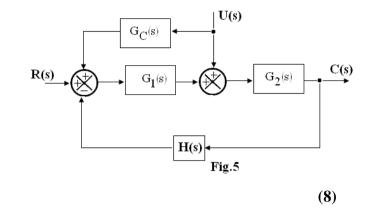
2

ROLL NO.

Code: AE61

Subject: CONTROL ENGINEERING

Q.3 a. Consider the blockdiagram of a control system shown in Fig.5. Determine the condition the feed forward compensation $G_{C}(s)$ should satisfy cancel out the to effect of disturbance input U(s) on the output C(s).



b. Draw s-domain signal-flow diagrams for the first-order systems:

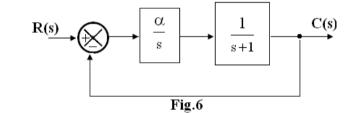
(i)
$$\dot{x} = ax; x(t = 0) = x(0)$$
 (ii) $\dot{x} = ax + bu; x(t = 0) = x(0)$
(iii) $\dot{x} = ax + bu; x(t = 0) = x(0) = 0; y = cx$

Where x is the state-variable, u is the input and y is the system output. Obtain the overall transfer function $T(s) = \frac{Y(s)}{U(s)}$ for case (iii) above. (2× 4=8)

Q.4 a. Determine the sensitivity

frequency?

 S_{α}^{T} for the system shown in Fig.6. Evaluate S_{α}^{T} for $\omega = 0.1$ and 1 rad/s, with $\alpha = 2$ and $T(s) = \frac{C(s)}{R(s)}$. Does the sensitivity increase with



$$(3+4+1)$$

b. Draw the torque characteristics vs pulses/second for a stepper motor, indicating maximum torque, slew range, and pull-out torque. Explain with the help of a diagram, how a stepper motor can be used in closed-loop mode.(4+4)

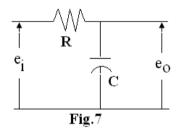
Q.5 a. Show that the response c(t) of a second-order system $\frac{C(s)}{R(s)} = \frac{K}{Js^2 + Fs + K}$ to unit step input r(t) = u(t) has a steady-state part and a transient part. Find the value of C_{SS} for $\zeta < 1$. (8)

b. A unity negative feedback control system has an open-loop transfer function consisting of two poles at −0.1 and 1, two zeros at −2 and −1, and a variable gain K. Using Routh-stability criterion, determine the range of values of K for which the closed-loop system has 0, 1 and 2 poles in the right-half s-plane. (8)

Q.6 a. Consider the feedback system $G(s) = K \frac{(s+b)}{s(s+a)}$; H(s) = 1; $s = \sigma + j\omega$. Using the angle criterion for the root-locus prove that $(\sigma + b)^2 + \omega^2 = (b^2 - ab)$. Hence, sketch the root-locus, taking a = 1, b = 2. (5+3)

Code: AE61

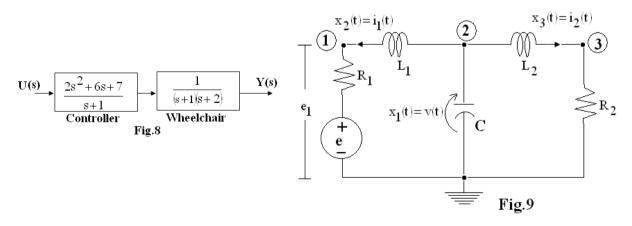
- b. Consider the open-loop transfer function $G(s)H(s) = \frac{K(s+z)}{s(s^2+2s+2)}$. After open-loop pole-zero cancellation, write the characteristic equation and sketch the root-locus. (8)
- **Q.7** a. At any point $G(j\omega) = x + jy$ on the polar plot of $G(j\omega)$, derive the equation of the constant-M circles, identifying the centre and radius. Draw typical family of M-circles with respect to -1 + j0 point on the x-axis. (5+3)
 - b. Obtain the sinusoidal transfer-function for the RC filter shown in Fig.7. Hence sketch the polar plot and the inverse polar plot for $0 \le \omega \le \infty$. (2+3+3)



- Q.8 a. Compare the advantages and applications of phase-lead and phase-lag compensators. (8)
 - b. A cascade compensator $G_C(s) = \frac{s + \alpha}{s}$ is used with a unity negative feedback

system $G(s) = \frac{K}{s+4}$. Find the values of K and α to achieve 20% peakovershoot and 1s settling time. Using these values of K and α , write the transfer function of the prefilter to cancel out the closed-loop zero. Calculate the steady-state error to unit ramp input. (5+1+2)

Q.9 a. An intelligent wheelchair is designed to move from place to place avoiding obstacles as shown in Fig.8. Write the canonical state-variable form of the complete system. Draw its block-diagram in state-variable form. (5+3)



b. For the electrical system shown in Fig.9, $x_{1,2,3}$ are the state- variables and $y_{1,2}$ are output variables representing voltage across and current through R_2 . Derive the state-model of the system. (8)

4