AMIETE - ET/CS/IT (NEW SCHEME)

Time: 3 Hours
Max. Marks: 100
please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Let $\delta(\mathrm{t})$ denote the delta function. The value of the integral $\int_{-\infty}^{\infty} \delta(\mathrm{t}) \cos \left(\frac{3 \mathrm{t}}{2}\right) \mathrm{dt}$
is
(A) 1
(B) -1
(C) 0
(D) $\pi / 2$
b. A system with input $x[n]$ and output $y[n]$ is given as $y[n]=\left[\sin \frac{5}{6} \pi n\right] x[n]$
(A) linear, stable and invertible
(B) non-linear, stable and non-invertible
(C) linear, stable and non-invertible
(D) linear, unstable and invertible
c. Convolution of $x(t+5)$ with impulse function $\delta(t-7)$ is equal to:
(A) $x(t-12)$
(B) $\mathrm{x}(\mathrm{t}+12)$
(C) $x(t-2)$
(D) $x(t+2)$
d. If the impulse response of discrete time system is $h[n]=-5^{n} u[-n-1]$, then the system function $\mathrm{H}[\mathrm{z}]$ is equal to
(A) $\frac{-\mathrm{z}}{\mathrm{z}-5}$ and ROC $|\mathrm{Z}|>5$
(B) $\frac{\mathrm{z}}{\mathrm{z}-5}$ and $\mathrm{ROC}|\mathrm{Z}|<5$
(C) $\frac{-\mathrm{z}}{\mathrm{z}-5}$ and ROC $|\mathrm{Z}|<5$
(D) $\frac{\mathrm{z}}{\mathrm{z}-5}$ and $\mathrm{ROC}|\mathrm{Z}|>5$
e. The fourier transform of a real valued time signal has
(A) odd symmetry
(B) even symmetry
(C) conjugate symmetry
(D) no symmetry
f. The fourier series representation of an impulse train denoted by: $\delta\left(\mathrm{t}-\mathrm{nT} \mathrm{o}_{\mathrm{o}}\right)$ is given by
(A) $\frac{1}{\mathrm{~T}_{\mathrm{o}}} \sum_{\mathrm{n}=-\infty}^{\infty} \exp \left(-j \frac{2 \pi n t}{\mathrm{~T}_{\mathrm{o}}}\right)$
(B) $\frac{1}{\mathrm{~T}_{\mathrm{o}}} \sum_{\mathrm{n}=-\infty}^{\infty} \exp \left(-\mathrm{j} \frac{\pi \mathrm{nt}}{\mathrm{T}_{\mathrm{o}}}\right)$
(C) $\frac{1}{\mathrm{~T}_{\mathrm{o}}} \sum_{\mathrm{n}=-\infty}^{\infty} \exp \left(\mathrm{j} \frac{\pi \mathrm{nt}}{\mathrm{T}_{\mathrm{o}}}\right)$
(D) $\frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} \exp \left(j \frac{2 \pi n t}{T_{0}}\right)$
g. Laplace transform of signal $x(t)=e^{-a t} u(t)$ for $a>0$ is
(A) $\frac{1}{s+a}$
(B) $\frac{s}{s+a}$
(C) $\frac{s}{(s+a)^{2}}$
(D) $\frac{a}{s+a}$
h. $x[n]=a^{|n|},|a|<1$, the discrete time fourier transform is given by
(A) $\frac{1-a^{2}}{1-2 a \sin \Omega+a^{2}}$
(B) $\frac{1-a^{2}}{1-2 a \cos \Omega+a^{2}}$
(C) $\frac{1-a^{2}}{1-2 j a \sin \Omega+a^{2}}$
(D) None of these
i. Given the z -transform $\mathrm{X}(\mathrm{z})=\frac{\mathrm{z}(8 \mathrm{z}-7)}{4 \mathrm{z}^{2}-7 \mathrm{z}+3}$. Given $\mathrm{x}(\mathrm{n})$ is causal, then $\mathrm{x}[\infty]$ is
(A) 1
(B) 2
(C) ∞
(D) 0
j. The signal $x(t)=e^{j(2 t+\pi / 4)}$ is a
(A) power signal with $\mathrm{P}_{\infty}=1$
(B) power signal with $\mathrm{P}_{\infty}=2$
(C) energy signal with $\mathrm{E}_{\infty}=2$
(D) energy signal with $\mathrm{E}_{\infty}=1$

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

Q. 2 a. Compute the output $y(t)$ for a continuous - time LTI system whose impulse response $h(t)$ and the input $x(t)$ are given by $h(t)=e^{-\alpha t} u(t)$ $\mathrm{x}(\mathrm{t})=\mathrm{e}^{\alpha \mathrm{t}} \mathrm{u}(-\mathrm{t}) \alpha>0$.
b. Determine the response $y(n), n \geq 0$, of the system by second order difference equation, $y(n)-3 y(n-1)-4 y(n-2)=x(n)+2 x(n-1)$ for the input $\mathrm{x}(\mathrm{n})=4^{\mathrm{n}} \mathrm{u}(\mathrm{n})$
Q. 3 a. Consider the periodic sequence $\mathrm{x}[\mathrm{n}]$ shown in Fig.1. Determine the fourier coefficient c_{k} and sketch the magnitude spectrum $\left|c_{k}\right|$.

b. Find the cosine representation fourier series for the periodic signal shown in

Fig. 2

Fig. 2
Q. 4 a. Consider a continuous time LTI system described by $\frac{d y(t)}{d t}+2 y(t)=x(t)$. Using the fourier transform, find the output $\mathrm{y}(\mathrm{t})$ to each of the following input signals:
(i) $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})$
(ii) $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t})$
b. (i) Verify the integration property, that is $\int_{-\infty}^{\mathrm{t}} \mathrm{x}(\tau) \mathrm{d} \tau \leftrightarrow \pi \mathrm{X}(0) \delta(\omega)+\frac{1}{\mathrm{j} \omega} \mathrm{X}(\omega)$
(ii) Prove the frequency convolution theorem, that is

$$
\begin{equation*}
\mathrm{x}_{1}(\mathrm{t}) \mathrm{x}_{2}(\mathrm{t}) \leftrightarrow \frac{1}{2 \pi} \mathrm{X}_{1}(\omega) * \mathrm{X}_{2}(\omega) \tag{8}
\end{equation*}
$$

Q. 5 a. Consider a casual LTI system described by the difference equation $y[n]+\frac{1}{2} y[n-1]=x[n]$
(i) Determine the frequency response $\mathrm{H}(\mathrm{j} \Omega)$ of the system.
(ii) What is the response of the system to the following input

$$
\begin{equation*}
x[n]=\delta[n]-\frac{1}{2} \delta[n-1] \tag{8}
\end{equation*}
$$

b. Consider a system consisting of the cascade of two LTI system with frequency responses,
$\mathrm{H}_{1}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\frac{2-\mathrm{e}^{-\mathrm{j} \omega}}{1+\frac{1}{2} \mathrm{e}^{-\mathrm{j} \omega}}$, and, $\mathrm{H}_{2}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\frac{1}{1-\frac{1}{2} \mathrm{e}^{-\mathrm{j} \omega}+\frac{1}{4} \mathrm{e}^{-\mathrm{j} 2 \omega}}$
Find the difference equation describing the overall system.
Q. 6 a. The frequency response of a causal and stable continuous time LTI system is expressed as $H(\mathrm{j} \omega)=\frac{1-\mathrm{j} \omega}{1+\mathrm{j} \omega}$
(i) Determine the magnitude of $\mathrm{H}(\mathrm{j} \omega)$.
(ii) Find which of the following statements is true about $\tau(\omega)$, the group delay of the system
(a) $\tau(\omega)=0$, for $\omega>0$
(b) $\tau(\omega)>0$, for $\omega>0$
(c) $\tau(\omega)<0$, for $\omega>0$
b. Discuss the following:
(i) first order sample-hold circuit
(ii) reconstruction of analog signal from the sampled version using a low-pass filter.
Q. 7 a. Find the inverse laplace transform of the following:
(i) $X(s)=\frac{s}{s^{2}+5 s+6}$
(ii) $\quad X(s)=\frac{3 s^{2}+8 s+6}{(s+2)\left(s^{2}+2 s+1\right)}$
b. Consider a continuous-time LTI system for which the input $x(t)$ and output $\mathrm{y}(\mathrm{t})$ are related by $\mathrm{y}^{\prime \prime}(\mathrm{t})+\mathrm{y}^{\prime}(\mathrm{t})-2 \mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t})$
(i) Find the system function $\mathrm{H}(\mathrm{s})$.
(ii) Determine the impulse response $\mathrm{h}(\mathrm{t})$ for each of the following 3 cases
(a) the system is causal.
(b) the system is stable.
(c) the system is neither causal nor stable.
Q. 8 a. Find the inverse z-transform of
(i) $\mathrm{X}(\mathrm{z})=\frac{1}{\left(1-\mathrm{az}^{-1}\right)^{2}} \quad|\mathrm{z}|<|\mathrm{a}|$
(ii) $\mathrm{X}(\mathrm{z})=\frac{1 / 4 \mathrm{z}^{-1}}{\left(1-\frac{1}{2} \mathrm{z}^{-1}\right)\left(1-\frac{1}{4} \mathrm{z}^{-1}\right)}$ ROC $:|\mathrm{z}|>1 / 2$
b. A casual system is represented by the following difference equation:
$y(n)+\frac{1}{4} y(n-1)=x(n)+\frac{1}{2} x(n-1)$
(i) Find the system function $\mathrm{H}(\mathrm{z})$ and give the corresponding region of convergence.
(ii) Find the unit sample response of the system.
(iii) Find the frequency response $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$ and determine its magnitude and phase.
Q. 9 a. Consider the random process $X(t)=A \cos \left(\omega_{0} t+\phi\right)$ where A and ω_{0} are constants and ϕ is random variable distributed on $[-\pi, \pi]$. Check when $\mathrm{X}(\mathrm{t})$ is Ergodic?
b. For the linear time invariant system shown in Fig.3, if the autocorrelation $R_{x}(e)$ of random process $X(t)$ and impulse response $h(\tau)$ is expressed by $\mathrm{R}_{\mathrm{X}}(\tau)=\mathrm{e}^{-\alpha|\tau|}$ and $h(\tau)=e^{-\beta \tau} u|\tau|$

Fig. 3
Where, α and β are constants and $u(\tau)$ is unit step tunction. Ihen, find the spectral density function of output process $\mathrm{Y}(\mathrm{t})$.

