Code: AE54/AC54/AT54 Subject: LINEAR ICs & DIGITAL ELECTRONICS

AMIETE - ET/CS/IT (NEW SCHEME)

Time: 3 Hours

JUNE 2012

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions, selecting at least TWO questions from each part, each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or the best alternative in the following: 0.1

 (2×10)

- a. The hexadecimal equivalent of binary number 1 1 1 0 1 1 0 1 1 1 1 0 1 0
 - (A) EDEB

(B) 35572

(C) FB72

- **(D)** 3B7A
- b. An operational amplifier is acting as inverting amplifier has $R_1 = 10 \text{ k}\Omega$ $R_f = 100 \, k\Omega$, the gain for the amplifier is
 - (A) -5

(B) 5

(C) 10

- **(D)** -10
- c. Common Mode Rejection ratio (CMRR) is

$$(\mathbf{A}) \left| \frac{\mathbf{A}_{\text{CM}}}{\mathbf{A}_{\text{DM}}} \right|$$

$$(B) \left| \frac{1}{A_{CM}} \right|$$

(C)
$$\frac{1}{A_{DM}}$$

$$\mathbf{(D)} \ \frac{\mathbf{A}_{\mathrm{DM}}}{\mathbf{A}_{\mathrm{CM}}}$$

d. The output expression for the given circuit (Fig.1)

1

(A)
$$V_0 = (V_3 + V_4) - (V_1 + V_2)$$
 (B) $V_0 = (V_1 + V_2) - (V_3 + V_4)$

(B)
$$V_0 = (V_1 + V_2) - (V_3 + V_4)$$

(C)
$$V_0 = (V_3 + V_1) - (V_4 + V_2)$$
 (D) $V_0 = (V_4 + V_1) - (V_3 + V_2)$

(D)
$$V_0 = (V_4 + V_1) - (V_3 + V_2)$$

Code: AE54/AC54/AT54 Subject: LINEAR ICs & DIGITAL ELECTRONICS

e. The circuit (Fig. 2) given is

Fig. 2

- (A) Antilog amplifier circuit
- (B) Peak clipper circuit
- (C) Peak clamper circuit
- (**D**) Log amplifier
- f. The maximum +ve and -ve numbers which can be represented by using 2's complement form using n bits is

(A)
$$+(2^n-1), -(2^{n-1}-1)$$
 (B) $+2^{n-1}, -(2^{n-1}-1)$

$$(\mathbf{B}) + 2^{n-1}, -(2^{n-1} - 1)$$

(C)
$$+2^{n-1}, -2^{n-1},$$

(D)
$$+(2^{n-1}-1)-2^{n-1}$$

- g. The parity of binary number is 1 1 0 0 1 1 0 is
 - (A) Even

- (B) Odd
- (C) Same as the number of bits
- (**D**) Same as the number of zeros
- h. The output frequency of an astable multivibrator (555) is

(A)
$$f = \frac{1}{T} = (R_A + 2R_B)C$$

$$(\mathbf{B}) \; \frac{1}{(\mathbf{R}_{\mathbf{A}} + 2\mathbf{R}_{\mathbf{B}})\mathbf{C}}$$

(C)
$$\frac{1.45}{(R_A + 2R_B)C}$$

(D)
$$\frac{1}{C}$$

- i. The number of 2 to 4 decoders required to make 4 to 16 decoders are
 - **(A)** 3

(B) 2

(C) 4

- **(D)** 5
- j. The ring counter consisting of 5 FFs will have
 - (**A**) 10 states

(B) 5 states

(C) 2^5 states

(**D**) 7 states

PART (A) Answer At least TWO questions. Each question carries 16 marks.

a. List out any 8 important characteristics of an ideal operational amplifier. **Q.2 (8)**

2

Code: AE54/AC54/AT54 Subject: LINEAR ICs & DIGITAL ELECTRONICS

- b. Classify the ICs on the basis of application device used and chip complexity. (4)
- c. In Fig. 3, given $R_1 = 10 \text{ k}\Omega$, $R_f = 100 \text{ k}\Omega$, $V_i = 1 \text{ V}$, a load of 25 k Ω is connected to the output terminal. Calculate (i) I_1 (ii) V_0 (iii) I_L and total current I_0 into the output pin (Fig. 3). (4)

Fig. 3

- Q.3 a. Define the terms (i) Input bias current (ii) Input offset current (iii) Input offset voltage (iv) Thermal drift. (8)
 - b. (i) Define slew rate of an opamp (ii) A square wave of peak to peak amplitude 800 mV has to be amplified to a peak to peak amplitude of 8 volts, with a rise time of 5 μs or less. Can 741 be used? Explain.
 (8)
- Q.4 a. Find V_o for the adder-subtractor circuit given in Fig. 4. Draw the equivalent circuit for the steps.

- b. Explain the operation of a practical integrator and draw the frequency response of a basic integrator showing the 0 dB gain cross over frequency. (6)
- c. Calculate V_0 for the circuit, given $V_1=5$ V, $V_2=2$ V (Fig. 5).

Code: AE54/AC54/AT54 Subject: LINEAR ICs & DIGITAL ELECTRONICS

- Q.5 a. Describe the operation of op-amp to generate an asymmetric square wave. (6)
 - b. The basic step of a 9 bit DAC is 10.4 mV (i) If 0 0 0 0 0 0 0 0 0 0 represents 0 V, what is the output produced if the input is (1 1 1 1 0 1 1 1 1)₂? (ii) What O/P voltage would be produced by a DAC, whose output range is 0 to 10 V, whose binary input number is (a) (1 0 0 1 1 1 1 0)₂ 8 bit DAC (b) (1 0 1 1 0)₂ 5 bit DAC (2+4)
 - c. Draw the internal functional diagram of 555 timer. (4)

PART (B) Answer At least TWO questions. Each question carries 16 marks.

Q.6 a. Convert the following 8421 BCD numbers to their Excess-3 code equivalent. (i) 0 1 1 0 0 0 0 0 (ii) 1 0 0 0 0 1 0 0 (iii) 1 0 0 1 0 1 1.

(iv) 0 1 0 1 1 0 0

(4)

b. Perform the following conversations: (any 6)

(i) $(1\ 1\ 0\ 1\ 0\ 1\ 1\ 0)_2 = (\underline{}_{8}$ (ii) $472_8 = (\underline{}_{9})_2$

- (iii) $0.325_8 = (\underline{})_{10}$ (iv) $(0\ 1\ 1\ 0\ 1\ 1\ 0\ 1)_2 = (\underline{})_{16}$
- (v) $(2040.125)_{10} = (____)_{16}$ (vi) $(1\ 1\ 1\ 0\ 1.1\ 1\ 0\ 0\ 1)_2 = (____)_{10}$
- (vii) B3F8.1=(___)₁₀ (viii) (325.172)₁₀=(___)₈ ($\mathbf{2} \times \mathbf{6}$)
- **Q.7** a. Prove (A+BC)=(A+B)(A+C). (2)
 - b. Prove the following identity using De Morgan's theorem:

$$yz + wxz + wxyz + wyz = z(w + x + y)$$
 (4)

c. Draw the logic circuit for the given identity: (i) $X = \overline{AB + C} + \overline{BC}$

(ii)
$$Y = \overline{AB + C} + B\overline{C}$$
 (4)

d. Implement the minimized boolean expression for the function:

$$(i) f = b c d + a b d + a b d + b c d + b c d + a b c d + a b c d$$

(ii)
$$f = \overline{A} \overline{B} C + B \overline{C} + \overline{A} B C + ABC$$
 (2×3)

- Q.8 a. Simplify the functions using K map (i) $X = \overline{A} \overline{D} + A \overline{B} \overline{D} + \overline{A} \overline{C} D + \overline{A} \overline{C} D$ (ii) $f(W,X,Y,Z) = \sum (0,1,2,3,4,7,8,11,12,14,15)$ (8)
 - b. (i) Explain the operation of a BCD adder (ii) Subtract (1 1 1 0 0)₂ from (1 0 0 1 1)₂ using 2's complement subtraction. Also show direct subtraction for comparison.
 (2×4)
- **Q.9** a. Write short notes on:-

(i) Multiplexer

(ii) Clocked JK FF

 (2×4)

b. Explain the operation of shift register counters. Aid your answer with suitable diagram. (8)