ROLL NO.

Code: AE53/AC53/AT53

Subject: ELECTRONIC DEVICES & CIRCUITS

AMIETE – ET/CS/IT (NEW SCHEME)

Time: 3 Hours

JUNE 2012

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. In an RC phase shift oscillator circuit using an ideal voltage amplifier the frequency of oscillation is 1 KHz. If $C = 0.01 \mu F$, then R is equal to _____

(A)	11.25K	(B)	6.5K
(C)	15.92K	(D)	20.45K

b. In a full wave rectifier supplied from a transformer with centre tapped secondary, the minimum reverse breakdown voltage that each diode should have, when the input to the transformer is $V_m \sin \omega t$, is _____.

(A) $2 V_{m}$	$(\mathbf{B}) \mathbf{V}_{\mathrm{m}}$
(C) V _m /2	$(\mathbf{D}) 4 V_{m}$

c. In an NPN transistor whose β is 49 and I_{CO} is 2 μ A, if V_{CE} is equal to 4 V and I_B = 0, the collector current is equal to _____.

(A) 2 μA	(B) 0.04 mA
(C) 0	(D) 0.1 mA

d. In a voltage divider biasing circuit for a transistor with $\beta = 49$, $R_E = 5 \text{ K}\Omega$ and $R_{TH} = 60 \text{ K}\Omega$, the bias stabilization factor $S(I_{CO})$ is equal to_____.

(A) 11.48	(B) 10.48
(C) 10.27	(D) 11

e. Three amplifiers of voltage gains 20 dB, 26 dB and 32 dB are cascaded to obtain an output voltage of 2 V. The input voltage needed is equal to_____.

(A) 0.25 mV	(B) 0.25 V
(C) 0.25 µV	(D) 2 V

f. If a transistor has $h_{ie} = 1.2 \text{ K}\Omega$, $h_{fe} = 50$, $h_{re} = 3 \times 10^{-4}$ and $h_{oe} = 40 \text{ A/V}$ its $h_{ib} =$ _____.

(A) 12 Ω	(B) 23.5 Ω
(C) 36.5 Ω	(D) 48 Ω

ROLL NO.

Code: AE53/AC53/AT53 Subject: ELECTRONIC DEVICES & CIRCUITS

g. In crystal oscillator, a piezoelectric crystal is used to obtain high stability of

(A) frequency	(B) amplitude
(C) bias voltage	(D) wave shape

h. Maximum power transfer theorem states that the maximum power from a source is delivered to a load R_L , when its output resistance R_O is equal to_____.

(A) $R_L/2$	(B) 2R _L
$(\mathbf{C}) \mathbf{R}_{\mathrm{L}}$	(D) 0

i. In a typical UJT oscillator circuit, if $R_T = 40 \text{ K}\Omega$, $C_T = 0.12 \text{ }\mu\text{F}$ and the UJT has $\eta = 0.7$, the frequency of oscillation is equal to_____.

(A) 33.2 Hz	(B) 173 Hz
(C) 33.2 kHz	(D) 173 kHz

j. Amplifier A_1 has its lower and upper cut-off frequencies as 50 Hz and 100 kHz respectively, while the second Amplifier A_2 has its lower and upper cut-off frequencies as 5 kHz and 1 MHz. If A_1 and A_2 are cascaded, the lower and upper cut-off frequencies of the cascaded amplifier are _____.

(A)	50 Hz and 1 MHz	(B)	5 kHz and 100 kHz
(C)	5 kHz and 1 MHz	(D)	50 Hz and 100 kHz

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. For the RC circuit shown in Fig.1, derive the expression for the output voltage V_0 across the resistor R, if the input is $V_i u(t)$. (8)

b. For the circuit shown in Fig.2, find the voltages across 2 mho and 4 mho conductances, using nodal analysis. (8)

ROLL NO.

Code: AE53/AC53/AT53 Subject: ELECTRONIC DEVICES & CIRCUITS

- Q.3 a. Write short note on (i) Tunnel Diode (ii) Zener Diode (8)
 - b. In the 6 V Zener regulator circuit of Fig.3, calculate the value of R, so that the circuit performs satisfactorily under all the given conditions. $[I_z(min) = 6 \text{ mA}, P_d(max) \text{ for the zener} = 1164 \text{ mW}]$ (8)

- Q.4 a. Draw the input and output characteristics of a transistor in common base configuration and explain how a transistor could be used as an amplifier. (8)
 - b. Explain the construction and operation of a JFET with suitable diagram, and draw its output characteristics. (8)
- **Q.5** a. In the Darlington emitter follower circuit of Fig.4, determine the input impedance R_{in} , voltage gain v_o/v_i and the output impedances R_o . (9)

- b. Design a potential divider biasing network for a DEMOSFET shown in Fig.5, with $I_{DSS} = 10$ mA and $V_P = -4V$, so as to place the operating point at $I_{DQ} = 2.5$ mA. Assuming $R_D = 2.5$ R_S, determine the voltage gain v_o/v_i of the amplifier. (7)
- **Q.6** a. A cascade of two identical N-channel JFETs, with $g_m = 1 \text{ms}$ and $r_d = 40 \text{ k}\Omega$, is shown in Fig.6. Write the ac equivalent circuit and then calculate the voltage gain of each stage and the overall voltage gain, A_{v_0} . If the two stages are interchanged, what will be the new overall voltage gain, A_{v_0} . (8)

Code: AE53/AC53/AT53 Subject: ELECTRONIC DEVICES & CIRCUITS

b. In the RC coupled amplifier circuit of Fig.7, determine the lower cut-off frequency, $f_{L_{CE}}$ due to the bypass capacitor, C_{E} . (8)

- Q.7 a. Prove that the maximum conversion efficiency of a class A power amplifier is 50%.(8)
 - b. A complementary symmetry class B output stage operated from a single supply voltage of +24 V, is to deliver power to a loudspeaker load of 4 Ω . If the input voltage is 10 sin ω t, calculate the ac power output, dc power input, conversion efficiency and power dissipation in each of the transistors. (8)
- **Q.8** a. State and explain Barkhausen criteria for sustained oscillations. Discuss the effect of loop gain $|A\beta|$ on the amplitude of oscillations. (8)
 - b. Draw the circuit of a Wien's bridge oscillator using an ideal op amp. Obtain the expression for the frequency of oscillation. (8)
- Q.9 a. Write short notes on the semiconductor fabrication processes (i) Diffusion and (ii) Ion Implantation. (10)
 - b. Calculate the chip area needed for a 250 pF MOS capacitor, if the thickness of

SiO₂ layer is 500 A and its relative dielectric constant is 3.5. $(\epsilon_0 = 54 \times 10^{-12} \text{ Fm}^{-1}).$ (6)