\qquad

AMIETE - ET/CS/IT (NEW SCHEME)

Time: 3 Hours

please write your roll no. at the space provided on each page

 IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. In an RC phase shift oscillator circuit using an ideal voltage amplifier the frequency of oscillation is 1 KHz . If $\mathrm{C}=0.01 \mu \mathrm{~F}$, then R is equal to \qquad
(A) 11.25 K
(B) 6.5 K
(C) 15.92 K
(D) 20.45 K
b. In a full wave rectifier supplied from a transformer with centre tapped secondary, the minimum reverse breakdown voltage that each diode should have, when the input to the transformer is $\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}$, is \qquad .
(A) $2 \mathrm{~V}_{\mathrm{m}}$
(B) V_{m}
(C) $\mathrm{V}_{\mathrm{m}} / 2$
(D) $4 \mathrm{~V}_{\mathrm{m}}$
c. In an NPN transistor whose β is 49 and I_{CO} is $2 \mu \mathrm{~A}$, if V_{CE} is equal to 4 V and $\mathrm{I}_{\mathrm{B}}=0$, the collector current is equal to \qquad .
(A) $2 \mu \mathrm{~A}$
(B) 0.04 mA
(C) 0
(D) 0.1 mA
d. In a voltage divider biasing circuit for a transistor with $\beta=49, \mathrm{R}_{\mathrm{E}}=5 \mathrm{~K} \Omega$ and $\mathrm{R}_{\mathrm{TH}}=60 \mathrm{~K} \Omega$, the bias stabilization factor $\mathrm{S}\left(\mathrm{I}_{\mathrm{CO}}\right)$ is equal to \qquad .
(A) 11.48
(B) 10.48
(C) 10.27
(D) 11
e. Three amplifiers of voltage gains $20 \mathrm{~dB}, 26 \mathrm{~dB}$ and 32 dB are cascaded to obtain an output voltage of 2 V . The input voltage needed is equal to \qquad .
(A) 0.25 mV
(B) 0.25 V
(C) $0.25 \mu \mathrm{~V}$
(D) 2 V
f. If a transistor has $\mathrm{h}_{\mathrm{ie}}=1.2 \mathrm{~K} \Omega, \mathrm{~h}_{\mathrm{fe}}=50, \mathrm{~h}_{\mathrm{re}}=3 \times 10^{-4}$ and $\mathrm{h}_{\mathrm{oe}}=40 \mathrm{~A} / \mathrm{V}$ its $\mathrm{h}_{\mathrm{ib}}=$ \qquad .
(A) 12Ω
(B) 23.5Ω
(C) 36.5Ω
(D) 48Ω
g. In crystal oscillator, a piezoelectric crystal is used to obtain high stability of
\qquad _.
(A) frequency
(B) amplitude
(C) bias voltage
(D) wave shape
h. Maximum power transfer theorem states that the maximum power from a source is delivered to a load R_{L}, when its output resistance R_{O} is equal to \qquad .
(A) $R_{L} / 2$
(B) $2 \mathrm{R}_{\mathrm{L}}$
(C) R_{L}
(D) 0
i. In a typical UJT oscillator circuit, if $\mathrm{R}_{\mathrm{T}}=40 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=0.12 \mu \mathrm{~F}$ and the UJT has $\eta=0.7$, the frequency of oscillation is equal to \qquad .
(A) 33.2 Hz
(B) 173 Hz
(C) 33.2 kHz
(D) 173 kHz
j. Amplifier A_{1} has its lower and upper cut-off frequencies as 50 Hz and 100 kHz respectively, while the second Amplifier A_{2} has its lower and upper cut-off frequencies as 5 kHz and 1 MHz . If A_{1} and A_{2} are cascaded, the lower and upper cut-off frequencies of the cascaded amplifier are \qquad _.
(A) 50 Hz and 1 MHz
(B) 5 kHz and 100 kHz
(C) 5 kHz and 1 MHz
(D) 50 Hz and 100 kHz

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. For the RC circuit shown in Fig.1, derive the expression for the output voltage V_{o} across the resistor R, if the input is $V_{i} u(t)$.

Fig. 1

Fig. 2
b. For the circuit shown in Fig.2, find the voltages across 2 mho and 4 mho conductances, using nodal analysis.
Q. 3 a. Write short note on
(i) Tunnel Diode
(ii) Zener Diode
(8)
b. In the 6 V Zener regulator circuit of Fig.3, calculate the value of R , so that the circuit performs satisfactorily under all the given conditions. [$\mathrm{I}_{\mathrm{Z}}(\mathrm{min})=6 \mathrm{~mA}$, $P_{d}(\max)$ for the zener $\left.=1164 \mathrm{~mW}\right]$

Fig. 3
Q. 4 a. Draw the input and output characteristics of a transistor in common base configuration and explain how a transistor could be used as an amplifier.
b. Explain the construction and operation of a JFET with suitable diagram, and draw its output characteristics.
Q. 5 a. In the Darlington emitter follower circuit of Fig.4, determine the input impedance R_{in}, voltage gain $\mathrm{v}_{0} / \mathrm{v}_{\mathrm{i}}$ and the output impedances R_{0}.

Fig. 5
b. Design a potential divider biasing network for a DEMOSFET shown in Fig.5, with $\mathrm{I}_{\mathrm{DSS}}=10 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{P}}=-4 \mathrm{~V}$, so as to place the operating point at $\mathrm{I}_{\mathrm{DQ}}=$ 2.5 mA . Assuming $\mathrm{R}_{\mathrm{D}}=2.5 \mathrm{R}_{\mathrm{S}}$, determine the voltage gain $\mathrm{V}_{\mathrm{o}} / \mathrm{v}_{\mathrm{i}}$ of the amplifier.
Q. 6 a. A cascade of two identical N-channel JFETs, with $g_{m}=1 \mathrm{~ms}$ and $r_{d}=40 \mathrm{k} \Omega$, is shown in Fig.6. Write the ac equivalent circuit and then calculate the voltage gain of each stage and the overall voltage gain, $\mathrm{A}_{\mathrm{v}_{0}}$. If the two stages are interchanged, what will be the new overall voltage gain, $\mathrm{A}_{\mathrm{v}_{0}}$.
b. In the RC coupled amplifier circuit of Fig.7, determine the lower cut-off frequency, $\mathrm{f}_{\mathrm{L}_{\mathrm{CE}}}$ due to the bypass capacitor, C_{E}.

Fig. 7
Q. 7 a. Prove that the maximum conversion efficiency of a class A power amplifier is 50\%.
b. A complementary symmetry class B output stage operated from a single supply voltage of +24 V , is to deliver power to a loudspeaker load of 4Ω. If the input voltage is $10 \sin \omega \mathrm{t}$, calculate the ac power output, dc power input, conversion efficiency and power dissipation in each of the transistors.
(8)
Q. 8 a. State and explain Barkhausen criteria for sustained oscillations. Discuss the effect of loop gain $|A \beta|$ on the amplitude of oscillations.
b. Draw the circuit of a Wien's bridge oscillator using an ideal op amp. Obtain the expression for the frequency of oscillation.
Q. 9 a. Write short notes on the semiconductor fabrication processes (i) Diffusion and (ii) Ion Implantation.
b. Calculate the chip area needed for a 250 pF MOS capacitor, if the thickness of SiO_{2} layer is 500 A and its relative dielectric constant is 3.5. $\left(\epsilon_{0}=54 \times 10^{-12} \mathrm{Fm}^{-1}\right)$.

