ROLL NO.

Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS - I

AMIETE – ET/CS/IT (NEW SCHEME)

Time: 3 Hours

JUNE 2012

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE OUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

0.1 Choose the correct or the best alternative in the following:

a. If x=u(1-v) and y=uv, then $\frac{\delta(x, y)}{\delta(u, v)}$ is equal to (A) u **(B)** v **(C)** 1 **(D**) 0 b. The value of $\int_{\Omega} \int_{\Omega} dx dy$ is $(\mathbf{B}) \frac{1}{2}$ **(A)** 1 (C) $\frac{1}{3}$ **(D)**

c. The value of K for which equations 3x+y-Kz=0, 4x-2y-3z=0 and 2Kx+4y+Kz=0 are consistent, is

(A) 4	(B) 3
(C) 2	(D) 1

d. The order of convergence in Newton-Raphson method is

(A) 1	(B) 1.6
(C) 2	(D) 2.4

e. The equation $(2x^{3}y^{2}+x^{4})dx+(x^{4}y+y^{4})dy=0$

(A) variable separable	(B) Homogeneous
(C) Linear	(D) Exact

Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS - I

f. The solution of
$$\frac{d^2 y}{dx^2} + 3a \frac{dy}{dx} - 4a^2 y = 0$$
 is
(A) $y=C_1e^{ax}+C_2e^{4ax}$ (B) $y=C_1e^{-ax}+C_2e^{4ax}$
(C) $y=C_1e^{ax}+C_2e^{-4ax}$ (D) $y=C_1e^{-ax}+C_2e^{4ax}$
g. When X(x) is any function of x, $\frac{1}{D-a}X(x)$ is equal to
(A) $e^{ax}\int X(x)e^{-ax} dx$ (B) $e^{ax}\int X(x)e^{ax} dx$
(C) $e^{-ax}\int X(x)e^{ax} dx$ (D) $e^{-ax}\int X(x)e^{-ax} dx$
h. $\beta(\frac{1}{2},\frac{1}{2})$ is equal to
(A) $\sqrt{\pi}$ (B) π
(C) $\pi^{\frac{3}{2}}$ (D) None of these

i. $J_{\frac{1}{2}}(x)$ is equal to

(A)
$$J_{-\frac{1}{2}}(x)\sin x$$

(B) $J_{-\frac{1}{2}}(x)\cos x$
(C) $J_{-\frac{1}{2}}(x)\tan x$
(D) $J_{-\frac{1}{2}}(x)\cot x$

j. The polynomial $2x^2+x+3$ in terms of Legendre polynomials is

(A)
$$\frac{1}{3}(4P_2 - 3P_1 + 11P_0)$$

(B) $\frac{1}{3}(4P_2 + 3P_1 + 11P_0)$
(C) $\frac{1}{3}(4P_2 + 3P_1 - 11P_0)$
(D) $\frac{1}{3}(4P_2 - 3P_1 - 11P_0)$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. If
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
, show that $\left(\frac{\delta}{\delta x} + \frac{\delta}{\delta y} + \frac{\delta}{\delta z}\right)^2 u = -9(x + y + z)^{-2}$ (8)

ROLL NO.

Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS - I

b. Expand $f(x,y)=\sin(xy)$ in powers of (x-1) and $\left(y-\frac{\pi}{2}\right)$ up to the second degree terms. (8)

Q.3 a. Evaluate by changing the order of integration of
$$\int_{0}^{\infty} \int_{0}^{x} x e^{-\frac{x^2}{y}} dy dx$$
 (4+4)

- b. Find the volume common to the cylinders $x^2+y^2=a^2$ and $x^2+z^2=a^2$ (8)
- Q.4 a. Find the eigen values and eigen vectors of the matrix

$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
(8)

- b. For what values of K, the equations x+y+z=1, 2x+y+4z=K, $4x+y+10z=K^2$ have a solution and solve them completely in each case. (8)
- Q.5 a. Use Gauss-Seidal method to solve the equations 10x + 2y + z = 9 2x + 20y - 2z = -44 -2x + 3y + 10z = 22(8)

b. Employ Taylor's series method to obtain an approximate value of y at x=0.2 for the differential equation $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0. Compare the numerical solution obtained with the exact solution. (6+2)

- **Q.6** a. Solve the differential equation $ye^{y}dx = (y^{3} + 2xe^{y})dy$ (8)
 - b. Find the orthogonal trajectories of the family of coaxial circles $x^2+y^2+2\lambda y+c=2$, λ being a parameter. (8)
- **Q.7** a. Solve the differential equation $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = e^{-2x}\sin 2x$ (8)
 - b. Solve the simultaneous equations

$$\frac{dx}{dt} + y = \sin t$$
$$\frac{dy}{dt} + x = \cos t$$
Given that x=2 and y=0 when t=0

(8)

ROLL NO.

Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS - I

Q.8 a. Show that
$$\beta(m,m) = \frac{\sqrt{\pi} [(m)]}{2^{2m-1} [(m+\frac{1}{2})]}$$
 (8)

b. Obtain the series solution of
$$(1 + x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = 0$$
 (8)

Q.9 a. Show that
$$\int_{-1}^{+1} P_m(x) P_n(x) dx = \begin{cases} 0, & m \neq n \\ \frac{2}{2n+1}, & m = n \end{cases}$$
 (4+4)

b. Prove that

$$\frac{d}{dx} \left\{ J_n^2(x) + J_{n+1}^2(x) \right\} = 2 \left\{ \frac{n}{x} J_n^2(x) - \frac{n+1}{x} J_{n+1}^2(x) \right\}$$
(8)