Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS - I

AMIETE - ET/CS/IT (NEW SCHEME)

Time: 3 Hours

JUNE 2012

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. If $\mathrm{x}=\mathrm{u}(1-\mathrm{v})$ and $\mathrm{y}=\mathrm{uv}$, then $\frac{\delta(\mathrm{x}, \mathrm{y})}{\delta(\mathrm{u}, \mathrm{v})}$ is equal to
(A) u
(B) v
(C) 1
(D) 0
b. The value of $\int_{0}^{1} \int_{0}^{1-x} d x d y$ is
(A) 1
(B) $\frac{1}{2}$
(C) $\frac{1}{3}$
(D) $\frac{1}{4}$
c. The value of K for which equations $3 x+y-K z=0,4 x-2 y-3 z=0$ and $2 K x+4 y+K z=0$ are consistent, is
(A) 4
(B) 3
(C) 2
(D) 1
d. The order of convergence in Newton-Raphson method is
(A) 1
(B) 1.6
(C) 2
(D) 2.4
e. The equation $\left(2 x^{3} y^{2}+x^{4}\right) d x+\left(x^{4} y+y^{4}\right) d y=0$
(A) variable separable
(B) Homogeneous
(C) Linear
(D) Exact

Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS - I

f. The solution of $\frac{d^{2} y}{d x^{2}}+3 a \frac{d y}{d x}-4 a^{2} y=0$ is
(A) $y=C_{1} e^{a x}+C_{2} e^{4 a x}$
(B) $y=C_{1} e^{-a x}+C_{2} e^{-4 a x}$
(C) $y=C_{1} e^{a x}+C_{2} e^{-4 a x}$
(D) $y=C_{1} e^{-a x}+C_{2} e^{4 a x}$
g. When $X(x)$ is any function of $x, \frac{1}{D-a} X(x)$ is equal to
(A) $e^{a x} \int X(x) e^{-a x} d x$
(B) $e^{a x} \int X(x) e^{a x} d x$
(C) $e^{-a x} \int X(x) e^{a x} d x$
(D) $e^{-a x} \int X(x) e^{-a x} d x$
h. $\beta\left(\frac{1}{2}, \frac{1}{2}\right)$ is equal to
(A) $\sqrt{\pi}$
(B) π
(C) $\pi^{\frac{3}{2}}$
(D) None of these
i. $\mathrm{J}_{1 / 2}(\mathrm{x})$ is equal to
(A) $J_{-\frac{1}{2}}(x) \sin x$
(B) $J_{-\frac{1}{2}}(x) \cos x$
(C) $J_{-\frac{1}{2}}(x) \tan x$
(D) $\mathrm{J}_{-\frac{1}{2}}(\mathrm{x}) \cot \mathrm{x}$
j. The polynomial $2 x^{2}+x+3$ in terms of Legendre polynomials is
(A) $\frac{1}{3}\left(4 \mathrm{P}_{2}-3 \mathrm{P}_{1}+11 \mathrm{P}_{0}\right)$
(B) $\frac{1}{3}\left(4 \mathrm{P}_{2}+3 \mathrm{P}_{1}+11 \mathrm{P}_{0}\right)$
(C) $\frac{1}{3}\left(4 \mathrm{P}_{2}+3 \mathrm{P}_{1}-11 \mathrm{P}_{0}\right)$
(D) $\frac{1}{3}\left(4 \mathrm{P}_{2}-3 \mathrm{P}_{1}-11 \mathrm{P}_{0}\right)$

Answer any FIVE Questions out of EIGHT Questions.
Each question carries 16 marks.
Q. 2 a. If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, show that $\left(\frac{\delta}{\delta x}+\frac{\delta}{\delta y}+\frac{\delta}{\delta z}\right)^{2} u=-9(x+y+z)^{-2}$

Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS - I

b. Expand $f(x, y)=\sin (x y)$ in powers of $(x-1)$ and $\left(y-\frac{\pi}{2}\right)$ up to the second degree terms.
Q. 3 a. Evaluate by changing the order of integration of $\int_{0}^{\infty} \int_{0}^{x} x e^{-\frac{x^{2}}{y}}$ dydx
b. Find the volume common to the cylinders $x^{2}+y^{2}=a^{2}$ and $x^{2}+z^{2}=a^{2}$
Q. 4 a. Find the eigen values and eigen vectors of the matrix

$$
\left[\begin{array}{ccc}
8 & -6 & 2 \tag{8}\\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right]
$$

b. For what values of K, the equations $x+y+z=1,2 x+y+4 z=K, 4 x+y+10 z=K^{2}$ have a solution and solve them completely in each case.
Q. 5 a. Use Gauss-Seidal method to solve the equations

$$
\begin{align*}
& 10 x+2 y+z=9 \\
& 2 x+20 y-2 z=-44 \tag{8}\\
& -2 x+3 y+10 z=22
\end{align*}
$$

b. Employ Taylor's series method to obtain an approximate value of y at $\mathrm{x}=0.2$ for the differential equation $\frac{d y}{d x}=2 y+3 e^{x}, y(0)=0$. Compare the numerical solution obtained with the exact solution.
Q. 6 a. Solve the differential equation $\mathrm{ye}^{\mathrm{y}} \mathrm{dx}=\left(\mathrm{y}^{3}+2 \mathrm{xe}^{\mathrm{y}}\right) \mathrm{dy}$
b. Find the orthogonal trajectories of the family of coaxial circles $x^{2}+y^{2}+2 \lambda y+c=2, \lambda$ being a parameter.
Q. 7 a. Solve the differential equation $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=e^{-2 x} \sin 2 x$
b. Solve the simultaneous equations

$$
\begin{align*}
& \frac{d x}{d t}+y=\sin t \\
& \frac{d y}{d t}+x=\cos t \tag{8}
\end{align*}
$$

Given that $\mathrm{x}=2$ and $\mathrm{y}=0$ when $\mathrm{t}=0$

Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS - I

Q. 8 a. Show that $\beta(m, m)=\frac{\sqrt{\pi} \mid(m)}{2^{2 m-1} \left\lvert\,\left(m+\frac{1}{2}\right)\right.}$
b. Obtain the series solution of $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0$
Q. 9 a. Show that $\int_{-1}^{+1} P_{m}(x) P_{n}(x) d x=\left\{\begin{array}{cl}0, & m \neq n \\ \frac{2}{2 n+1}, & m=n\end{array}\right.$
b. Prove that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dx}}\left\{\mathrm{~J}_{\mathrm{n}}^{2}(\mathrm{x})+\mathrm{J}_{\mathrm{n}+1}^{2}(\mathrm{x})\right\}=2\left\{\frac{\mathrm{n}}{\mathrm{x}} \mathrm{~J}_{\mathrm{n}}^{2}(\mathrm{x})-\frac{\mathrm{n}+1}{\mathrm{x}} \mathrm{~J}_{\mathrm{n}+1}^{2}(\mathrm{x})\right\} \tag{8}
\end{equation*}
$$

