ROLL NO.

Code: AE15

Subject: COMMUNICATION ENGINEERING

AMIETE – ET (OLD SCHEME)

Time: 3 Hours

JUNE 2012

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

a. Recovering information from a carrier is known as

(A) demultiplexing	(B) modulation
(C) demodulation	(D) carrier recovery

b. Single sideband system require

(A) more band width	(B) high power
(C) more modulation index	(D) Complex Receiver Circuit

c. In a DM system, the granular noise occurs when the modulating signal

(A) increases rapidly	(B) remains constant
(C) decreases rapidly	(D) the nature of modulating signal has no
	effect on noise

d. A zero source generates two messages with prob 0.8 and 0.2 These are coded as 1 and 0. The code efficiency is

(A) 0.2	(B) 0.5
(C) 0.7	(D) 1.0

e. 13 dBm is equivalent to

AE15

(A) 2 mW	(B) 20 W
(C) 20 mW	(D) 2 W

f. For uniform quantization with 32 levels, the quantized output can be represented by a binary digits where n is

(A) 5	(B) 8
(C) 6	(D) 4

g. In forward error correction, if the data unit is 111111 and the divisor is 1010, them the dividend at the transmitter is

(A) 1111111000	(B) 1111	111010
(C) 111111	(D) 1111	110000
/ JUNE - 2012	1	AMIETE - ET (OLD SCHEME)

Code: AE15	Subject: COMMUNICATION ENGINEERING
h. Hamming code has a ca	ipability of
(A) Error detection	(B) Error correction
(C) Error detection and	l correction (D) Error encapsulation
i. The probability densit	y function of the envelope of narrowband noise is
(A) Poisson	(B) Gaussian
(C) Rayleigh	(D) Rician
j. The Ring Modulator is	s used for the generation of
(A) SSB-SC signal	(B) DSB-SC signal
(C) FM signal	(D) AM signal

ROLL NO. ____

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q 2.	a.	Differentiate between analog and digital signals.	(4)
	b.	Draw and explain block diagram of a communication system.	(6)
	c.	Find the mathematical representation of narrow band noise.	(6)
Q 3.	a.	Explain the different types of internal noise in brief.	(8)
	b.	Derive the expression for Noise in a two stage cascaded amplifier.	(8)
Q 4.	a.	Define modulation index with respect to amplitude modulation. Derive the power relation and efficiency in A.M. modulated wave.	(10)
	b.	Drive the mathematic expression for double sideband suppressed carrier. (DSB-SC)	(6)
Q5.	a.	What will happen if a PM signal is received by an FM receiver and vice versa? Also describe the narrowband frequency modulation.	(8)
	b.	If a sinusoidal message signal is modulated with modulation index of 0.4 and 0.5, then(i) Find the efficiency of AM signal.(ii) When 100% modulation is achieved.	(8)
Q6.	a.	State and proof the sampling theorem for the low pass signals.	(8)
	b.	Explain the principle of Adaptive delta modulation. How does it differ from delta modulation?	(8)
Q7.	a.	Describe the Hamming code, Hamming distance and Entropy.	(8)

2

AMIETE - ET (OLD SCHEME)

ROLL NO. _

Code:	AE15
-------	-------------

Subject: COMMUNICATION ENGINEERING

	b.	A DMS	X has five symbols x_1 , x_2 , x_3 , x_4 and x_5 with P (x_1) = 0.4	
		$P(x_2) = 0$ Construct	D.19, $P(\mathfrak{X}_3) = 0.16$, $P(\mathfrak{X}_4) = 0.15$ and $P(\mathfrak{X}_5) = 0.1$ the Shannon-Fano code for X and calculate the efficiency of	
		code.		(8)
Q8.	a.	Describe range mea	the operation of a CW Doppler radar can we use a CW radar for asurement? Discuss.	(8)
	b.	Explain transmiss	the importance of Blanking and synchronizing pulse in T.V ion.	(8)
Q9.		Write sho	ort notes on	
		(i) (ii) (iii) (iv)	Pulse Amplitude Modulation (PAM) Optimum Receiver SNR of PCM Channel capacity of a Gaussian channel	(4 × 4)