AMIETE - ET (OLD SCHEME)

Time: 3 Hours

JUNE 2012

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The electric field on equipotential surface is
(A) unity
(B) always parallel to the surface
(C) always perpendicular to the surface
(D) zero
b. The equation $\bar{\nabla} \cdot \overline{\mathrm{J}}=0$ is called
(A) Laplacian equation
(B) Kirchoff's node equation
(C) Poisson's equation
(D) Continuity equation for discrete currents
c. Ohm's law relates the current density J with field intensity E as
(A) $\overline{\mathrm{J}}=\sigma \overline{\mathrm{E}}$
(B) $\overline{\mathrm{J}}=\sigma^{2} \overline{\mathrm{E}}$
(C) $\overline{\mathrm{J}}=\frac{\overline{\mathrm{E}}}{\sigma}$
(D) $\overline{\mathrm{J}}=\frac{|\overline{\mathrm{E}}|^{2}}{\sigma}$
d. Intrinsic or Characteristic impedance of free space has a value of
(A) Zero
(B) $120 \pi \mathrm{ohms}$
(C) 73 ohm
(D) $73 \pi \mathrm{ohm}$
e. A electric field of $50 \mathrm{~V} / \mathrm{m}$ have the charge of $0.3 \mu \mathrm{C}$, what is the force on that charge.
(A) $15 \mu \mathrm{~N}$
(B) $12.5 \mu \mathrm{~N}$
(C) $18 \mu \mathrm{~N}$
(D) $10.5 \mu \mathrm{~N}$
f. Waveguide act as a
(A) High pass filter
(B) Low pass filter
(C) All pass filter
(D) Band pass filter
g. Select the equator which is not Maxwell's equation
(A) $\nabla \cdot \mathrm{B}=0$
(B) $\nabla . \mathrm{D}=\mathrm{q}$
(C) $\nabla \cdot \mathrm{E}=-\mathrm{B}$
(D) $\nabla \times H=D+j$
h. Troposphere scatter is used with frequencies in the following range.
(A) HF
(B) VHF
(C) UHF
(D) VLF
i. Ideal value of VSWR of Transmission Line is
(A) 0
(B) 1
(C) ∞
(D) any value between 0 and 1
j. Cassegrain feed is used with a parabolic reflector
(A) increase the gain of system
(B) increase bandwidth
(C) reduce the size of main reflector
(D) allow the feed to be placed at a convent point

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. State and derive Possion's and Laplace's equation.
b. Find the force on a unit (+ ve) charge at P on x -axis $(2,0)$ due to $1 \times$ $10^{-9} \mathrm{C}$ at origin and $-2 \times 10^{-9} \mathrm{C}$ at $(1,0)$.
c. Find capacitance of parallel plate capacitor.
Q. 3 a. State and explain the boundary condition in magnetostatics.
b. Derive an expression for magnetic field due to an infinite plane sheet of uniform surface current density.
Q. 4 a. State and derive Ampere's circuit law. Also write its differential form.
b. Determine the force per unit length between two infinitely long parallel conductors carrying current I in the opposite direction, this conductors being separated by a distance ' d ' as shown in the Fig.1.

Fig. 1
Q. 5 a. Write and explain the Maxwell's equation in both differential and integral form for a time varying field.
b. Considering a losses having $\mu=2 \mu_{0}$ and $\in=5 \epsilon_{0}$. If $\overrightarrow{\mathrm{H}}=\cos (\mathrm{wt}-5 \mathrm{y}) \hat{\mathrm{a}}_{\mathrm{x}} \mathrm{A} / \mathrm{m}$, determine the frequency f and the electric field $\overrightarrow{\mathrm{E}}$.
Q. 6 a. Explain Poynting Vector and Power Flow in Electromagnetic Fields.
b. Define three types of Polarization of electromagnetic waves.
Q. 7 a. Derive the transmission line equation in terms of lumped parameters.
b. Derive the expression for oscillation frequencies in rectangular cavity resonator.
Q. 8 a. Derive the equation of effective area for Hertzian dipole antenna.
b. Consider an isotropic antenna radiating in free space. At a distance 100 m from the antenna, the electric field $\left(\mathrm{E}_{0}\right)$ is found to be $10 \mathrm{~V} / \mathrm{m}$. What is the total power radiated?
Q. 9 a. Derive the expression for critical frequency for sky wave propogation.
b. Explain the single stub technique for Impedance matching. Also discuss its merits and demerits.

