ROLL NO.

Code: AE14

Time: 3 Hours

Subject: ELECTROMAGNETICS AND RADIATION

AMIETE - ET (OLD SCHEME)

JUNE 2012

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. The electric field on equipotential surface is
 - (A) unity
 - (**B**) always parallel to the surface
 - (C) always perpendicular to the surface
 - (D) zero
- b. The equation $\nabla \cdot \mathbf{J} = 0$ is called

(A) Laplacian equation

- (**B**) Kirchoff's node equation
- (C) Poisson's equation (D) Continuity equation for discrete currents
- c. Ohm's law relates the current density J with field intensity E as

$(\mathbf{A}) \ \mathbf{J} = \mathbf{\sigma}\mathbf{E}$	$(\mathbf{B}) \mathbf{J} = \sigma^2 \mathbf{E}$
(C) $\overline{J} = \frac{\overline{E}}{\sigma}$	(D) $\overline{\mathbf{J}} = \frac{\left \overline{\mathbf{E}}\right ^2}{\sigma}$

d. Intrinsic or Characteristic impedance of free space has a value of

(A)	Zero	(B)	120 mohms
(C)	73 ohm	(D)	73 π ohm

e. A electric field of 50 V/m have the charge of 0.3 μ C, what is the force on that charge.

(A)	15 µ N	(B)	12.5 µ N
(C)	18 µ N	(D)	10.5 µ N

f. Waveguide act as a

(A)	High pass filter	(B)	Low pass filter
(C)	All pass filter	(D)	Band pass filter

AE14 / JUNE - 2012

AMIETE - ET (OLD SCHEME)

NULL NU.	ROL	L	NO.	
----------	-----	---	-----	--

Code:	AI	E14 Subject: ELECTROM	IAGNETICS AND RADIATION	N
	g.	Select the equator which is not Maxwell'	s equation	
		(A) $∇.B = 0$ (B) (C) $∇.E = -B$ (D)	$\nabla D = q$ $\nabla x H = D + j$	
	h.	Troposphere scatter is used with frequence	cies in the following range.	
		(A) HF (B) (C) UHF (D)	VHF VLF	
	i.	Ideal value of VSWR of Transmission Li	ne is	
		$\begin{array}{ccc} (A) & 0 & (B) \\ (C) & \infty & (D) \end{array}$	1 any value between 0 and 1	
	j.	Cassegrain feed is used with a parabolic r	reflector	
		 (A) increase the gain of system (B) increase bandwidth (C) reduce the size of main reflector (D) allow the feed to be placed at a conv 	ent point	
		Answer any FIVE Questions out of Each question carries 16	EIGHT Questions. marks.	
Q.2	a.	State and derive Possion's and Laplace's	equation. (6)	
	b.	Find the force on a unit (+ ve) charge 10^{-9} C at origin and -2×10^{-9} C at (1, 0).	at P on x-axis (2, 0) due to $1 \times$ (6)	
	c.	Find capacitance of parallel plate capacite	or. (4)	
Q.3	a.	State and explain the boundary condition	in magnetostatics. (8)	
	b.	Derive an expression for magnetic field uniform surface current density.	due to an infinite plane sheet of (8)	
Q.4	a.	State and derive Ampere's circuit law. A	so write its differential form. (9)	
	b.	Determine the force per unit length better conductors carrying current I in the optimise being separated by a distance ' d ' as shown	ween two infinitely long parallel posite direction, this conductors on in the Fig.1. (7)	
		×	$ \begin{array}{c} $	

AE14 / JUNE - 2012

Fig.1

AMIETE - ET (OLD SCHEME)

ROLL NO. __

Code: AE14 Subject: ELECTROMAGNETICS AND RADIATION

Q.5	a.	Write and explain the Maxwell's equation in both differential and integral form for a time varying field. (10)
	b.	Considering a losses having $\mu = 2\mu_0$ and $\in = 5 \in_0$. If $\vec{H} = \cos(wt - 5y) \hat{a}_x A/m$, determine the frequency f and the electric field \vec{E} . (6)
Q.6	a.	Explain Poynting Vector and Power Flow in Electromagnetic Fields. (10)
	b.	Define three types of Polarization of electromagnetic waves. (6)
Q.7	a.	Derive the transmission line equation in terms of lumped parameters. (8)
	b.	Derive the expression for oscillation frequencies in rectangular cavity resonator. (8)
Q.8	a.	Derive the equation of effective area for Hertzian dipole antenna. (10)
	b.	Consider an isotropic antenna radiating in free space. At a distance 100 m from the antenna, the electric field (E_0) is found to be 10 V/m. What is the total power radiated? (6)
Q.9	a.	Derive the expression for critical frequency for sky wave propogation. (8)
	b.	Explain the single stub technique for Impedance matching. Also discuss its merits and demerits. (8)

3