ROLL NO.	
RULL NU.	

Code: AE06/AC04/AT04 Subject: SIGNALS & SYSTEMS

AMIETE - ET/CS/IT (OLD SCHEME)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best alternative in the following:	(2×10)

- a. A system y(n) = x(-n) is
 - (A) Causal(B) Non Causal(C) Both(D) None
- b. Step function u(t) is obtained from impulse function $\delta(t)$ by
 - (A) Integrating

(B) Differentiating

- (C) Double Integration
- **(D)** Differentiating twice
- c. A system y(t) = t x(t) is
 - (A) Non linear

(B) Unstable

(**C**) Linear

- (D) Both (A) and (B)
- d. A signal that violates the first Dirichlet condition i.e. x(t) must be absolutely integrable is
 - $(\mathbf{A}) t^2$

(B) t

(C) t^3

- **(D)** 1/t
- e. The frequency response of discrete time filters must be periodic with period
 - (A) 2π

 $(B) \pi$

(C) $\pi/2$

- **(D)** $3\pi/2$
- f. The FT of a periodic impulse train in time domain with period T is a periodic impulse train in frequency domain with period
 - **(A)** $4\pi/T$

(B) π / T

(C) $3\pi/T$

- **(D)** $2\pi/T$
- g. The Frequency response of an LTI system with impulse response $h(t) = e^{-t} u(t)$ is
 - **(A)** $1/(j\omega + 1)$

(B) $1/(j\omega - 1)$

(C) $1/(1-j\omega)$

(D) $1/(e^{j\omega}+1)$

Code: AE06/AC04/AT04 Subject: SIGNALS & SYSTEMS

- h. FT is used to convert from Time domain to frequency domain, the signals which are
 - (A) Periodic

(B) Aperiodic

(C) Both

- (**D**) None
- i. Step response of a first order system
 - (A) Always exhibits Ringing Effect
 - (B) Does not exhibit Ringing Effect
 - (C) Sometimes exhibits Ringing Effect
 - (**D**) Sometimes does not exhibit Ringing Effect
- j. For a signal which is bandlimited to a frequency of 100 Hz, the Nyquist Rate will be
 - (**A**) 100 Hz

(B) 200 Hz

(C) 50 Hz

(D) 150 Hz

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. (i) Show that any real signal x(t) is composed of its even and odd parts. (4)
 - (ii) Find out the energy of the signal $x(t) = e^{-3t} u(t)$.

(4)

- b. Give the five classification of systems with an example of each.
- **(8)**
- Q.3 a. Find out the linear convolution of $x(n) = \{1, 2, 3, -6\}$ with $h(n) = \{2, 1, -1, 3, 5\}$
 - b. Enlist the properties of continuous time Fourier series. (8)
- Q.4 a. Find out the response y(t) of an LTI system with impulse response $h(t) = e^{-at} u(t)$; a>0 to the input signal $x(t) = e^{-bt} u(t)$; b>0 (8)
 - b. (i) Prove the Multiplication property of DTFT.

(4)

(ii) Find the DTFT of x(n) = u(n-2) - u(n-6)

- **(4)**
- Q.5 a. Give the time domain and frequency domain analysis of First order Continuous-Time systems. (8)
 - b. Explain Sampling theorem. How is sampling done with Zero Order Hold?What is Aliasing? (8)
- **Q.6** a. (i) Find out the LT of $x(t) = 3e^{-2t} u(t) 2e^{-t} u(t)$ and sketch the ROC in splane. (4)

Code: AE06/AC04/AT04

Subject: SIGNALS & SYSTEMS

- (ii) Find out the Inverse LT of $X(s) = \frac{1}{(s+1)(s+2)}$ when ROC: Re(s) > -1 (4)
- b. Find the LT of $x(t) = t e^{-at} u(t)$ using the properties of LT. (8)
- Q.7 a. (i) If $X(z) = 2+3z^{-1}+4z^{-2}$. Find the initial and final values of the corresponding sequence x(n). (4) (ii) Find the z transform of $x(n) = 7 (1/3)^n u(n) 6 (1/2)^n u(n)$ (4)
 - b. Using partial fraction expansion method determine the inverse z- transform

of
$$X(z) = \frac{3 - \frac{5}{6}z^{-1}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)}|z| > \frac{1}{3}$$
 (8)

- **Q.8** a. (i) Find the Fourier transform of the signal x(t) (4)
 - (ii) Find the convolution using waveform method of signals $x(t) = e^{-at}u(t)$ and h(t) = tu(t). (4)

- b. Find mean, variance and standard deviation of uniform PDF in [-2n,2n]. (8)
- Q.9 a. Define mean of a strictly stationary random process X(t). Also define Autocorrelation function and mention its properties. (8)
 - b. What is Power Spectral Density? Give its properties. (8)