\qquad

AMIETE - ET (OLD SCHEME)

Time: 3 Hours

JUNE 2012

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q. 1 Choose the correct or the best alternative in the following:

a. Thermal expansion of material arises from
(A) strong bonds
(B) thermal vibrations
(C) Weak bonds
(D) asymmetry of PE curve
b. The Burgers vector of a dislocation in NaCl is
(A) $5.58 \mathrm{~A}^{\circ}$
(B) $4.83 \mathrm{~A}^{\circ}$
(C) $3.95 \mathrm{~A}^{\circ}$
(D) $2.79 \mathrm{~A}^{\circ}$
c. Zone refining will be more efficient if the ratio of impurity in the solid to that in the liquid is
(A) 0.01
(B) 0.1
(C) 0.4
(D) ~ 1.0
d. The fastest diffusing species in Fe is
(A) H
(B) Ni
(C) C
(D) W
e. The Fermi level for Cu is 7 ev . The maximum velocity of free electrons at 0 K is
(A) $1570 \mathrm{Km} / \mathrm{s}$
(B) $1110 \mathrm{Km} / \mathrm{s}$
(C) $860 \mathrm{Km} / \mathrm{s}$
(D) $0 \mathrm{Km} / \mathrm{s}$
\qquad
f. The resistivity of pure silicon at room temperature is $3000 \Omega-\mathrm{m}$, the intrinsic carrier density is
(A) $1.095 \times 10^{16} / \mathrm{m}^{3}$
(B) $1.095 / \mathrm{m}^{3}$
(C) $1.095 \times 10^{10} / \mathrm{m}^{3}$
(D) $1.095 \times 10^{6} / \mathrm{m}^{3}$
g. With increase in temperature, the orientation polarization
(A) increases
(B) decreases
(C) remains constant
(D) None of these
h. The curie temperature of Cobalt is
(A) 2000 K
(B) 1400 K
(C) 1040 K
(D) 650 K
i. During purification of Si, the liquid that is produced by dissolving Si in HCL is
(A) $\mathrm{S}_{\mathrm{i}} \mathrm{Cl}_{4}$
(B) $\mathrm{S}_{\mathrm{i}} \mathrm{H}_{2} \mathrm{Cl}_{2}$
(C) $\mathrm{S}_{\mathrm{i}} \mathrm{H}_{3} \mathrm{Cl}$
(D) $\mathrm{S}_{\mathrm{i}} \mathrm{HCl}_{3}$
j. Effective number of atoms in the DC unit cell are
(A) 8
(B) 6
(C) 5
(D) 4

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

Q. 2 a. Calculate the c/a ratio for an ideally closed packed HCP crystal.
b. What is Bragg's law? Discuss powder method to determine structure of crystals.
Q. 3 a. Compare point, line, surface \& volume imperfections in brief.
b. What is binary phase diagram? How it is drawn? Draw silver-platinum phase diagram.
Q. 4 a. State Fick's First and Second Laws of diffusion. Write applications of second law.
b. Discuss requirement of heat treatment. Explain change in mechanical properties after annealing.
\qquad
Q. 5 a. Discuss thermal effect of welding on parent metal and its mechanical properties.
b. Explain photolithography and write its applications.
Q. 6 a. What is basic assumption taken in free electron theory? Discuss FermiDirac distribution of free electrons at different temperatures.
b. Calculate conductivity of copper at 300 K . The collision time τ for electron scattering is $2 \times 10^{-14} \mathrm{~s}$ at this temperature.
Q. 7 a. Draw Fermi level diagram for pure semiconductor based on Fermi-Dirac probability distribution and discuss conductivity in pure crystal.
b. Show that the conductivity of a semiconductor is minimum when concentration of electrons $n_{e}=n_{i} \sqrt{\mu_{\mathrm{h}} / \mu_{\mathrm{e}}}$. Find the minimum value of conductivity.
Q. 8 a. Discuss properties and applications of Glass and Mica as dielectric material.
b. What is polarization? Calculate relative dielectric constant of a material when it is inserted in a parallel plate capacitor of area $100 \mathrm{~mm}^{2}$ and distance of separation of 2 mm is $10^{-9} \mathrm{~F}$.
Q. 9 a. Write properties and applications of permalloy and ferrites.
b. What is hysteresis loop? Classify the magnetic materials based on their hysteresis loop. How we calculate hysteresis loss using hysteresis loop?

