Subject: MATERIALS AND PROCESSES Code: AE04

AMIETE - ET (OLD SCHEME)

JUNE 2012 Time: 3 Hours Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

• Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.

 The answer sheet for the Q.1 will be collected by the invigilator after Minutes of the commencement of the examination. Out of the remaining EIGHT Questions answer any FIVE Questions. E question carries 16 marks. Any required data not explicitly given, may be suitably assumed and stated. 				
Q.1	Choose the correct or the best alternative in the following:			(2×10)
	a.	Thermal expansion of ma	on of material arises from	
		(A) strong bonds(C) Weak bonds	(B) thermal vibrations(D) asymmetry of PE curve	
	b. The Burgers vector of a dislocation in NaCl is			
		(A) $5.58 \mathrm{A}^{\circ}$	(B) 4.83 A°	
		(C) 3.95 A°	(D) 2.79 A°	
	c. Zone refining will be more efficient if the ratio of impurity in the in the liquid is		e efficient if the ratio of impurity in the solid to the	at
		(A) 0.01	(B) 0.1	
		(C) 0.4	(D) ~1.0	
	d.	d. The fastest diffusing species in Fe is		
		(A) H	(B) Ni	
		(C) C	(D) W	

(B) $1110 \,\mathrm{Km/s}$

(D) $0 \, \text{Km/s}$

e. The Fermi level for Cu is 7ev. The maximum velocity of free electrons at 0K

Code: AE04

Subject: MATERIALS AND PROCESSES

- f. The resistivity of pure silicon at room temperature is 3000 $\,\Omega$ -m, the intrinsic carrier density is
 - **(A)** $1.095 \times 10^{16} / \text{m}^3$
- **(B)** $1.095/\text{m}^3$
- (C) $1.095 \times 10^{10} / \text{m}^3$
- **(D)** $1.095 \times 10^6 / \text{m}^3$
- g. With increase in temperature, the orientation polarization
 - (A) increases

- (B) decreases
- (C) remains constant
- (D) None of these
- h. The curie temperature of Cobalt is
 - (A) 2000 K

(B) 1400 K

(**C**) 1040 K

- **(D)** 650 K
- i. During purification of Si, the liquid that is produced by dissolving Si in HCL is
 - (A) S_iCl_4

(B) $S_iH_2Cl_2$

(C) $S_i H_3 Cl$

- (**D**) S_iHCl_3
- j. Effective number of atoms in the DC unit cell are
 - **(A)** 8

(B) 6

(C) 5

(D) 4

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Calculate the c/a ratio for an ideally closed packed HCP crystal. (8)
 - b. What is Bragg's law? Discuss powder method to determine structure of crystals. (8)
- Q.3 a. Compare point, line, surface & volume imperfections in brief. (8)
 - b. What is binary phase diagram? How it is drawn? Draw silver-platinum phase diagram. (8)
- Q.4 a. State Fick's First and Second Laws of diffusion. Write applications of second law.(8)
 - b. Discuss requirement of heat treatment. Explain change in mechanical properties after annealing. (8)

ROLL NO.	

Code: AE04 Subject: MATERIALS AND PROCESSES

Q.5 a. Discuss thermal effect of welding on parent metal and its mechanical properties. (8)

- b. Explain photolithography and write its applications. (8)
- Q.6 a. What is basic assumption taken in free electron theory? Discuss Fermi-Dirac distribution of free electrons at different temperatures. (8)
 - b. Calculate conductivity of copper at 300K. The collision time τ for electron scattering is 2×10^{-14} s at this temperature. (8)
- Q.7 a. Draw Fermi level diagram for pure semiconductor based on Fermi-Dirac probability distribution and discuss conductivity in pure crystal. (8)
 - b. Show that the conductivity of a semiconductor is minimum when concentration of electrons $n_e = n_i \sqrt{\frac{\mu_h}{\mu_e}}$. Find the minimum value of conductivity. (8)
- Q.8 a. Discuss properties and applications of Glass and Mica as dielectric material. (8)
 - b. What is polarization? Calculate relative dielectric constant of a material when it is inserted in a parallel plate capacitor of area 100mm² and distance of separation of 2 mm is 10⁻⁹ F.
- Q.9 a. Write properties and applications of permalloy and ferrites. (8)
 - b. What is hysteresis loop? Classify the magnetic materials based on their hysteresis loop. How we calculate hysteresis loss using hysteresis loop? (8)