\qquad

Time: 3 Hours
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following: (2×10)
a. $\operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}$ is equal to
(A) 0
(B) 1
(C) ∞
(D) does not exist
b. If $u=\frac{y^{3}-x^{3}}{y^{2}+x^{2}}$, then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$ is equal to
(A) x
(B) y
(C) u
(D) none of these
c. The value of the integral \iint dxdy over the triangle with vertices $(0,0),(2,0)$ $(0,2)$ is
(A) 1
(B) 2
(C) 3
(D) none of these
d. $\left(x^{3}+y\right) d x+\left(a x+b y^{3}\right) d y=0$ is exact if
(A) $\mathrm{a}=1$
(B) $\mathrm{b}=2$
(C) $\mathrm{a}=2, \mathrm{~b}=3$
(D) None of these
e. The general solution of $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-3 y=e^{x}$ is
(A) $\mathrm{y}=\mathrm{c}_{1} \mathrm{e}^{-\mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{-3 \mathrm{x}}-\frac{1}{4} \mathrm{e}^{\mathrm{x}}$
(B) $\mathrm{y}=\mathrm{c}_{1} \mathrm{e}^{-\mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{3 \mathrm{x}}-\frac{1}{4} \mathrm{e}^{\mathrm{x}}$
(C) $y=c_{1} e^{-x}+c_{2} e^{-3 x}+\frac{1}{4} e^{x}$
(D) $\mathrm{y}=\mathrm{c}_{1} \mathrm{e}^{-\mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{3 \mathrm{x}}+\frac{1}{4} \mathrm{e}^{\mathrm{x}}$

Code: AE01/AC01/AT01

f. The rank of the matrix $\left[\begin{array}{cccc}1 & -1 & 3 & 3 \\ 1 & 4 & -2 & -1 \\ 3 & 2 & 4 & 5\end{array}\right]$ is
(A) 2
(B) 3
(C) 4
(D) none of these
g. If two eigen values of $\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$ are 0 and 3 , the third eigen value is
(A) 15
(B) 10
(C) 11
(D) None of these
h. $P_{2}(1.5)$ is equal to [where $P_{2}(x)$ represent Legendre polynomials for $n=2$]
(A) 2.25
(B) 2.675
(C) 2.875
(D) None of these
i. $\quad \mathrm{J}_{2}(\mathrm{x})$ is equal to
(A) $\frac{2}{\mathrm{x}} \mathrm{J}_{0}(\mathrm{x})-\mathrm{J}_{1}(\mathrm{x})$
(B) $\frac{2}{\mathrm{x}} \mathrm{J}_{1}(\mathrm{x})-\mathrm{J}_{0}(\mathrm{x})$
(C) $\mathrm{J}_{1}(\mathrm{x})-\frac{2}{\mathrm{x}} \mathrm{J}_{0}(\mathrm{x})$
(D) None of these
j. The total differential of the function $z=x+y+x y$ at the point $(1,2)$ for $\Delta x=0.1$ and $\Delta y=-0.2$, is
(A) 0.1
(B) 0.2
(C) -0.1
(D) -0.2

Answer any FIVE Questions out of EIGHT Questions.

Each Question carries 16 marks.
Q. 2 a. If $u=f(x, y)$ and x and y are functions of t, show that $\frac{d u}{d t}=\frac{\partial u}{\partial x} \frac{d x}{d t}+\frac{\partial u}{\partial y} \frac{d y}{d t}$
b. If $u=x^{2} \tan ^{-1}\left(\frac{y}{x}\right)-y^{2} \tan ^{-1}\left(\frac{x}{y}\right), x>0, y>0$, evaluate

$$
\begin{equation*}
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}} \tag{8}
\end{equation*}
$$

Code: AE01/AC01/AT01

Subject: MATHEMATICS-I

Q. 3 a. Obtain Taylor's series expansion of $f(x, y)=\tan ^{-1} \frac{y}{x}$ in powers of $(x-1)$ and $(y-1)$ upto second degree terms.
b. Change the order of integration and then evaluate $\int_{0}^{1} \int_{y}^{y / 3} e^{x^{2}} d x d y$
Q. 4 a. Find the volume of the solid which is bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $\mathrm{y}+\mathrm{z}=1$ and $\mathrm{z}=0$.
b. Solve the differential equation $x d x+y d y+2\left(x^{2}+y^{2}\right) d y=0$
Q. 5 a. Use method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=\frac{e^{-3 x}}{x}$
b. Solve the differential equation $\frac{d^{2} y}{d x^{2}}+4 y=x^{2}+\cos 2 x$
Q. 6 a. Solve the differential equation $x^{3} \frac{d^{3} y}{d x^{3}}+5 x^{2} \frac{d^{2} y}{d x^{2}}+5 x \frac{d y}{d x}+y=x^{2}+\log x$
b. If A is a non-singular matrix and if $I+A+A^{2}+A^{3}+\ldots \ldots .+A^{n}=0$. Show that $A^{-1}=A^{n}$.
Q. 7 a. Use elementary row transformations to find inverse of $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 4\end{array}\right]$
b. If the system of equations $x+a y+a z=0, b x+y+b z=0, c x+c y+z=0$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are non-zero and non-unity, has a non-trivial solution, show that $\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=-1$
Q. $8 \quad$ a. Find eigen values and eigen vectors of $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$

Code: AE01/AC01/AT01

b. Find the series solution, about $\mathrm{x}=0$, of the differential equation

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0 \tag{8}
\end{equation*}
$$

Q. 9 a. Show that $4 J_{0}^{\prime \prime \prime}(x)+3 J_{0}^{\prime}(x)+\mathrm{J}_{3}(\mathrm{x})=0$
b. Prove that $\frac{1}{\sqrt{1-2 \mathrm{xt}+\mathrm{t}^{2}}}=\sum_{\mathrm{n}=0}^{\infty} \mathrm{t}^{\mathrm{n}} \mathrm{P}_{\mathrm{n}}(\mathrm{x}), \mathrm{t} \neq 1$

