ROLL NO.

Code: AC65

Subject: DISCRETE STRUCTURES

AMIETE - CS (NEW SCHEME)

Time: 3 Hours

JUNE 2012

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. Let A be a finite set of size *n*. The number of elements in the power set of $A \times A$ is

(A) 2^{2^n}	(B) 2^{n^2}
(C) $(2^n)^2$	(D) $(2^2)^n$

b. Two events A and B are mutually exclusive events if

$(\mathbf{A}) \ \mathbf{A} \cap \mathbf{B} = \mathbf{\phi}$	$(\mathbf{B}) \ \mathbf{A} \cap \mathbf{B} = \mathbf{A} - \mathbf{B}$
(C) $A \cup B = S$ (sample space)	(D) None of these

c. The contra-positive of $P \rightarrow \sim Q$ is

$(\mathbf{A}) \sim \mathbf{P} \rightarrow \sim \mathbf{Q}$	$(\mathbf{B}) \mathbf{P} \to \mathbf{Q}$
$(\mathbf{C}) \sim \mathbf{P} \to \mathbf{Q}$	$(\mathbf{D}) \mathbf{P} \to \sim \mathbf{Q}$

d. Find the negation of "There exists a dog that is 25 years old".

(A) Some dog is not 25 years old	(B) All dog is 25 years old
(C) Every dog is 25 years old	(D) Every dog is not 25 years old

e. Which of the following is correct?

$(\mathbf{A}) \ (\forall \mathbf{X})(\exists \mathbf{Y})\{\mathbf{X}+\mathbf{Y}=100\}$	
(C) $(\forall X)(\forall Y){X+Y = 100}$	

(B) $(\exists Y)$ $(\forall X)$ {X+Y = 100} **(D)** None of these

f. A relation R is reflexive on a set A if

(A) Domain (R) \subseteq Range (R)	(B) Domain (R) \subset Range (R)
(C) Domain (R) = Range (R) \neq A	(D) Domain (R) = Range (R) = A

- g. Relation $a_n = 3a_{n-1} + n$ is
 - (A) homogeneous recurrence relation
 - (B) non homogeneous recurrence relation
 - (C) generating function
 - (D) None of these

h. The value of the parameter α , for which the function $f(x) = 1 + \alpha x$, $\alpha \neq 0$ is the inverse of itself, is

(A) –2	(B) −1
(C) 1	(D) 2

- i. Which of the following is not true?
 - (A) Every group of prime order is cyclic
 - (B) Every subgroup of a cyclic group is cyclic
 - (C) Every proper subgroup of an infinite cyclic group is infinite
 - (D) Every cyclic group may not be abelian
- j. Which of the following is not a ring with respect to addition and multiplication?
 - (A) Set of all natural numbers(B) Set of all integers
 - (C) Set of all rational numbers
 - (D) Set of all $n \times n$ matrices with their elements as real numbers

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	If A, B and C are any sets,	prove that $A \cap (B -$	$(C) = (A \cap B) - C$	(5)
-----	----	-----------------------------	--------------------------	------------------------	-----

- b. Write all the subsets of the set $S = \{\phi, \{\phi\}\}\$ where ϕ is null set. (5)
- c. A problem is given to four students A, B, C, D whose chances of solving it are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$ respectively. Find the probability that the problem is solved.

(6)

- **Q.3** a. Simplify $[\sim (P \lor Q) \land R] \lor [R \land (Q \lor P)].$ (5)
 - b. Prove that $[(P \lor \sim Q) \rightarrow P]$ and $(P \lor Q)$ are equivalent. (5)
 - c. Prove that $P \to (Q \to R) = (P \land Q) \to R)$ (6)
- Q.4 a. Write the predicate calculus (using quantifiers) representation of the following sentence:
 "Some baby boys are more mischievous than all baby girls". Use B(X): X is a baby boy, G(X): X is a baby girl, N(X, Y): X is mischievous than Y.
 - b. Consider the following knowledge base: ∀X ∀Y cat(X) ∧ fish(Y) ⇒ likes_to_eat(X, Y)
 ∀X calico(X) ⇒ cat(X)
 ∀X tuna(X) ⇒ fish(X)
 Convert these into Horn clauses (convert into conjunction of disjuncts by removing all quantifiers and implications). (9)

		ROLL NO
Cod	e: A	AC65 Subject: DISCRETE STRUCTURES
Q.5	a.	Solve the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2$ and $a_1 = 7$. (8)
	b.	Prove the following by mathematical induction: $(1 + x)^n > 1 + nx$ for natural number $n \ge 2$, $x > -1$ and $x \ne 0$. (8)
Q.6	a.	Let A denotes the set of ordered pair of all natural numbers (N×N). Relation R is defined as follows: for $(a, b), (c, d) \in A, (a, b) R (c, d)$ iff $(a + d) = (b + c)$. Prove that the relation R is equivalence relation. (8)
	b.	If (L, \leq) is a lattice, then prove that the dual of the poset (L, \leq) is also a lattice. (8)
Q.7	a.	Let A : {a, b, c, d}, B = {p, q, r, s} denotes two sets. Identify which of the following is (are) a function/ not a function from A to B? Give reasons for each. (i) {(a, p), (b, q), (c, r)} (ii) {(a, p), (b, q), (c, s), (d, r)} (iii) {(a, p), (b, s), (b, r), (c, q)} (iv) {(a, p), (b, r), (d, r), (c, q)} (8)
	b.	Let $f : \mathbb{R} \to \mathbb{R}$ be a mapping defined as $f(x) = ax + b$; $a, b \in \mathbb{R}, a \neq 0$. Is f invertible? Justify. (8)
Q.8	a.	Prove that fourth roots of unity form a cyclic group. Find the order of each element of the group. (8)
	b.	Let G be a multiplicative group and $ba = a^p b^q$ where $a, b \in G$ and $p, q \in Z^+$. Prove that order of $a^p b^{q-2}$ is equal to order of $a b^{-1}$. (8)
Q.9	a.	Show that the set of numbers of the form $a + b\sqrt{2}$, with <i>a</i> and <i>b</i> as rational numbers is a ring with respect to addition and multiplication. (8)
	b.	Write a note on Generator matrix of an encoding function E and parity-check matrix associated with it. (8)