ROLL NO.

Code: AC10

Subject: DISCRETE STRUCTURES

AMIETE – CS (OLD SCHEME)

Time: 3 Hours

JUNE 2012

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. If $A = \{x | 3 < x < 5\}$ and $B = \{y | 5 < y < 10\}$ then $A \cap B$ is equal to

(A) {5}	(B) { }
(C) $\{x \mid 3 < x < 10\}$	(D) {3, 5, 10}

b. Determinant of an Identity matrix of order 4 x 4 is _____.

(A) 16	(B) 0
(C) 4	(D) 1

c. A bag contains 15 pencils. These pencils are of four different colors. How many pencils must be of same colors?

(A) 4	(B) 5
(C) 3	(D) 2

d. A graph is called bi-connected if number of articulation point in it is equal to

(A) 3	(B) 2
(C) 0	(D) 1

e. Sum of rational and an irrational number is irrational can be proved using

(A) Direct proof.	(B) Method of contradiction.
(C) Mathematical Induction.	(D) Method of contra positive.

f. An asymmetric relation is not

(A) Symmetric	(B) Anti -symmetric
(C) Reflexive	(D) Symmetric & Reflexive

ROLL	NO.	_
------	-----	---

Code: AC10

Subject: DISCRETE STRUCTURES

g. Which is not true about a bounded lattice?

	(A) It is always distributive(C) It has a least element	(B) Zero and Unit element Exist(D) It has a greatest element	
h.	$p \rightarrow q \leftrightarrow \sim p \lor q$ is a		
	(A) Contradiction(C) Tautology	(B) Contingency(D) Nothing can be said	
i.	Which of the following is not true about a tree?		
	 (A) A tree is a connected graph (B) A tree is acyclic (C) It is 1-seperable (D) There are multiple paths from a 	oot to a node.	
j.	A FSM recognizes a language of th	e following types	

 (A) Type 1
 (B) Type 0

 (C) Type 3
 (D) Type 2

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Find the sum of the following series $1^{*}(1/2)+2^{*}(1/2)^{2}+3^{*}(1/2)^{3}+$ (8)
	b.	Given that f and g are two functions defined over set of real numbers R as $f(x) = 1+x$ and $g(x) = 1 - x$ then find fof, fog, gof and gog. (8)
Q.3	a.	Using mathematical induction method, prove that $2^{2n+1}+3^{2n+1}$ is divisible by 5 for any $n \in N$. (8)
	b.	Read the following paragraph. Covert it into prepositional expression and show that the conclusion is true. "Ram is a student and he is sincere. Every sincere student excels in the class. Shyam is also a sincere student. Therefore Ram and Shyam both excel in their class." (8)
Q.4	a.	Solve the following recurrence equation: $a_n + 3 a_{n-1} = n + 1$ where $a_0 = 1$ (8)
	b.	A group of people contains 15 male and 7 female. Ramu, a male and Shyamala, a female are also in that group. A committee is to be formed of seven people containing 4 males and 3 females. What is probability that a committee formed of seven people will contain both Ramu and Shyamala? (8)

ROLL NO.

	Co	de: AC10 Subject: DISCRETE STRUCTURES
Q.5	a.	Find the number of edges in the following graphs: Complete Graph (K_n) , 5-Regular graph in n nodes, Complete bipartite graph $(K_{m,n})$ and N-Cube graph. (8)
Q.6	b. a.	Write Warshall's algorithm for finding transitive closure of a relation.(8)Show that if a relation R defined on a set A is symmetric and transitive then R(8)is not irreflexive.(8)
	b.	Given that $A = \{x \mid 0 < x \le 1\}$ then show that (A, \le) is an unbounded lattice. (8)
Q.7	a.	Define prime implicant and minimize the following Boolean expression using Karnaugh Map x' + xy + xyz + xy'z (8)
	b.	Draw logic circuit diagram for Boolean function $F(x, y, z) = x \lor (x \land (y \lor z)) \land (x' \lor y)$ (8)
Q.8	a.	Draw an expression tree for the infix expression $2 + \{3 - (4 + 5) / 3 * 4\} + 23$. Then traverse the tree in preorder and postorder and verify that the expressions so obtained are prefix and postfix notation respectively of the above expression. (8)
	h	Drow a finite state machine to recognize a recular expression $a^*(a \mid b)$ as

 b. Draw a finite state machine to recognize a regular expression a*(a+b)aab. Write its state transition table as well.
 (8)

Q.9 Write short notes on <u>**TWO**</u> of the followings:

- (i) Krushkal's algorithm
- (ii) Equivalence Relation
- (iii) Bounding elements in a poset (8+8)