DipIETE – ET/CS (NEW SCHEME)   –   Code: DE55/DC55

 

Subject: ENGINEERING MATHEMATICS - II

Flowchart: Alternate Process: JUNE 2009Time: 3 Hours                                                                                                     Max. Marks: 100

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

Q.1       Choose the correct or the best alternative in the following:                                  (210)

                

             a.  If , then  is equal to

 

                  (A)                                          (B)

                  (C)                                            (D)

 

             b.  is equal to 

 

                  (A)                           (B)

                  (C)                                 (D)

 

             c.  is equal to:

 

                  (A)                                             (B)

                  (C)                                             (D)

 

             d.  If  and  are two vectors such that =2, =3 and then the angle between the vectors is equal to

 

                  (A)                                                (B)

                  (C)                                                (D) 

 

             e.  If roots are in complex number then C.F. complementary function is equal to:

 

                  (A)                           (B)

                  (C)           (D)

 

             f.   In Fourier series  is equal to

                 

                  (A)                                                  (B)

                  (C)                                                  (D)


 

             g.    is equal to:

 

                  (A)                                     (B)

                  (C)                                     (D)

 

             h.  is equal to:

                                                                                                                                                                       

(A)                                            (B)

                  (C) cos t                                               (D) sin t

 

             i.   If P be the point represented by the complex number z such that z = x+iy, then the locus of P is equal to :__________ when

 

                  (A)            (B)

                                                                              (C)          (D)

                       

             j.   is equal to

 

                  (A)                                            (B)

                  (C)                                            (D)                                                           

            

 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

 

 

  Q.2     a.   Expand  in the power of x by Maclaur’s theorem upto the term of  and deduce the expansion of .          (8)

                  

             b.   Apply Taylor’s Theorem to calculate the value of , where .                   (8)

 

  Q.3     a.   Find the volume of the right circular cone formed by the revolution of a right angled triangle about a side which contained the right angle.            (8)

            

             b.   Find the length of curve  from origin to the point (1, 1).                          (8)


  Q.4     a.   Use De-Movire’s Theorem to solve the equation .             (8)

       

             b.   A resistance of 20 ohms and inductance of 0.2 Henry and capacitance of      100  are connected in series across 220 volt 50 cycle / sec main.  Determine,

                   (i)   Impedance                                    (ii)   Current

                   (iii) Voltage across L, R and C             (iv)  Power in watt

                   (v)  Power factor.                                                                                              (8)                             

  Q.5     a.   A rigid body is spinning with an angular velocity of 27 radian/sec about an axis parallel to 2i + j – 2k passing through the point i + 3j – k.  Find the velocity of the point whose position vector is 4i + 8j + k.       (8)

 

             b.   Find the moment about a line through the origin having the direction of            2i – 2j + 2k due to a 30 Kg force acting at a point (-4, 2, 5) in the direction of 12i – 4j – 3 k.                                        (8)

          

  Q.6     a.   An L-C-R circuit has R = 180 ohms,  L = 20H and applied voltage E(t) = 10 sin t.  Assuming that no charge is present but an initial current of 0 (zero) amp is flowing at t = 0 when the voltage is first applied, find Q and  at any time t. Q is given by the differential equation .                                                                                                                        (8)

 

             b.   Solve the differential equation  where .           (8)

 

Q.7    a.    An alternating current after passing through a rectifier has the form

                

                                                           Where  is the maximum current and period .  Express I in a Fourier series.                                                                                                    (8)

 

             b.   Find half range cosine series for the function in the range .                               (8)

 

  Q.8     a.   Find the Laplace Transform of .                                (8)

 

             b.   Find the Laplace Transform of .                                                            (8)

 

  Q.9     a.   Show that, .                     (8)

 

             b.   Solve  if y=0, Dy=1 at t = 0 and y = 1 at t = .        (8)