AMIETE – ET/CS/IT (OLD SCHEME)

 

Flowchart: Alternate Process: JUNE 2009Code: AE35/AC35/AT35                                                                 Subject: MATHEMATICS-II

Time: 3 Hours                                                                                                     Max. Marks: 100

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

Q.1       Choose the correct or the best alternative in the following:                                 (2 10)

 

             a.  Residue of  at the point  is

 

                  (A)  1                                                   (B) –1

                  (C)  0                                                   (D)  1/2                                                                 

 

             b.  Real part of  at all  is:

                  (A)                                     (B)

                  (C)                                        (D)

 

             c.  where c is the left half of the unit circle traversed  in the clockwise direction is

 

                  (A)  –2i                                                (B)  i

                  (C)  –i                                                  (D)  2i

 

             d.  The image of  where w-plane under the mapping  is

 

                  (A)  2u–1 = 0                                      (B)  2u+1 = 0

                  (C)  2v+1 = 0                                      (D)  2v–1 = 0

 

             e.  If , grad at the point (1, –2, –1) is

 

                  (A)                               (B) 

                  (C)                          (D) 

 

             f.   Curl  is

 

                  (A)  –i                                                  (B)  j

                  (C)                                                   (D)  –2i

 

             g.  If A is such that  then  is called

 

                  (A) Rotational                                      (B) Irrotational

                  (C) Conservative                                  (D) non Conservative

             h.  If  then  is_______;  where

 

                  (A) 1                                                    (B)  ½

                  (C)  0                                                   (D)  ¼

 

             i.   Eliminating function from  we obtain the partial differential equation

 

                  (A)                                   (B)   

                  (C)                                   (D) 

 

             j.   If ,  then value of div F is

 

                  (A)                                       (B) 

                  (C)                                   (D) 

 

 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

 

  Q.2     a.   A tightly stretched string of length l with fixed ends is initially in an equilibrium position. It is set vibrating by giving each point a velocity . Find the Displacement            (8)

       

             b.   An infinitely long plane uniform plate is bounded by two parallel edges and an end at right angles to them. The breadth of the plate is ; This end is maintained at a temperature  at all points and other edges are at zero temperature. Determine the temperature at any point of the plate in the steady state.    (8)

 

  Q.3     a.   A random variable X have the density function . If  and zero otherwise; Find

                   (i)  its distribution function.

                   (ii) probabilities  and .                                   (8)

                  

             b.   In a production of iron rods, let the diameter X be normally distributed

                   (i)  What percentage of defectives can we expect?  If the tolerance limits are set at in.

                   (ii) How should we set the tolerance limits to allow for 4% defectives?

                                          Assume  

                                                                                                                (8)

 

  Q.4     a.   A continuous random variable X has a pdf  find K. Also find mean and variance of this random variable.                            (8)                                                                        

 

b.      Prove that  where  and                      (8)

  Q.5     a.   Find the directional derivative of in the direction of a unit vector which makes an angle of  with x-axis.                    (8)

       

             b.   Use the Divergence theorem to evaluate ; where  and S is the boundary of the region bounded by the paraboloid  and the plane z = 4y.       (8)

 

  Q.6     a.   Show that  is independent of the path of integration from (1,1,2) to (2,3,4) and hence evaluate it.                                                             (8)

 

             b.   Verify the Green’s theorem for and C is the square with vertices at (0,0),              (8)

         

  Q.7     a.   Show that the function

                                                                                   (8)

                   satisfies Cauchy-Riemann equations at z = 0,  but  does not exist.

             b.   Find the image of the region  under the mapping                  (8)   

 

  Q.8     a.   Obtain the Taylor series expansion of  about          z = 0. Also find its radius of convergence.                                       (8)

 

             b.   Evaluate the integral ; > 0 by using contour integration.               (8)

 

  Q.9     a.   Using the method of separation of variables, solve ; where u(x,0)=6e–3x.                  (8)

 

             b.   Evaluate by using Stokes’s theorem  where c is the boundary the rectangle .                 (8)