Flowchart: Alternate Process: JUNE 2008Code: AE08                                                                  Subject: CIRCUIT THEORY & DESIGN

Time: 3 Hours                                                                                                      Max. Marks: 100

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

Q.1       Choose the correct or best alternative in the following:                                         (2x10)

a.      

 
The value of  z22  for the circuit of Fig.1 is:  

 

                   (A)                                        (B)  

(C)                                          (D) 

 

 

b.     

 
A possible tree of the topological equivalent of the network of Fig.2 is

 
 


(A)                                              

 
 


(B) 

 

(C)  Neither (A) nor (B)            

(D)  Both (A) and (B)

 

c.       Given   then is

                                                          

(A)  1                                                  (B)  2

(C)  0                                                  (D)  3

 

 

d.      The two-port matrix of an n:1 ideal transformer is . It describes the transformer in terms of its

 

(A)   z-parameters.                         (B)  y-parameters.

 
(C) Chain-parameters.                 (D) h-parameters.

 

 

e.       The value of ix(A) (in the circuit of Fig.3) is

 

(A)     1                                           (B)  2

(C)  3                                            (D)  4                         


 

 
             f.    To effect maximum power transfer to the load, ZL in Fig.4 should be

                   (A)  6                                                 

                   (B)  4

(C)                                

(D)

       

             g.   The poles of a stable Butter worth polynomial lie on

 

(A)     parabola                                      (B)  left semicircle

(C)  right semicircle                              (D)  an ellipse

 

             h.    If   and  are p.r., then which of the following are p.r. (Positive Real)?

(A)     and                          (B)

(C)                                 (D) All of these

 

             i.    For the pole-zero of Fig.5, the network function is

 

 
                  (A)            

(B)   

(C)                       

(D) 

 

 

             j.    For a series R-C circuit excited by a d-c voltage of 10V, and with time-constant   the voltage across C at time  is given by   

(A)                                 (B)    

(C)                                   (D) 

                                                                                                               

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

  Q.2     a.   Determine the loop currents, I1, I2, I3 and I4 using mesh (loop) analysis for the network shown in Fig.6.                                                                                                       (8)

 

 

 

 

 

 

 
 

 


             b.   Find the power delivered by the 5A current source (in Fig.7) using nodal analysis. (8)

                                                                             

 

 

       

 

 

 

 

 
 

 


Q.3 a.     The capacitor in the circuit of Fig.8 is initially charged to 200V. Find the transient current after the switch is closed at t=0.                                                                        (8)

 

 

 

 

 

 

 
 

 

 

 


             b.   Determine the r.m.s.  value of current,  voltage drops across R and L,  and 

                   power loss when 100 V (r.m.s.), 50 Hz is applied across the series combination of R=6 andH. Represent the current and voltages on a phasor diagram.                          (8)

 

  Q.4     a.   Using Kirchhoff’s laws to the network shown in Fig.9, determine the values of  and .  Verify that the network satisfies Tellegen’s theorem.    (8) 

 

 

 

 

 

 

 

 

 

 

 
 

 


       

     b.     State Reciprocity Theorem for a linear, bilateral, passive network. Verify reciprocity for the network shown in Fig.10.                                                (8)

 

 

 

 

 

 

 

 

 


  Q.5     a.   Find

                   (i) the r.m.s. value of the square-wave shown in Fig.11.

                   (ii) the average power for the circuit having  when the driving current is                                                                                                                             (8)

 

             b.   The voltage across an impedance is 80+j60 Volt, and the current though it is 3+j4 Amp. Determine the impedance and identify its element values, assuming frequency to be 50Hz. From the phasor diagram, identify the lag or lead of current w.r.t. voltage.                                                              (8)

 

  Q.6     a.   Consider the function Plot its poles and zeroes. Sketch the amplitude and phase for F(s) for                                     (8)

 

             b.   Determine whether the function  is positive real or not.                  (8)

 

Q.7       a.   Given the Z parameters of a two-port network, determine its Y parameters.        (8)

 
 


             b.   Find the y-parameters for

                   the two-port network of

                   Fig.12.                                                                                                              (8)

 

 

 

 

  Q.8     a.   Synthesise a one-port L-C network whose driving-point impedance is                                                                    (8)

 

             b.   Determine the condition for a lattice terminated in R as shown in Fig.13 to be a constant-resistance network.                                                                                                                         (8)

 

 
 

 

 

 

 

 

 

 

 

 


  Q.9     a.   Find the y-parameters of the circuit of Fig.14 in terms of s. Identify the poles of yij(s). Verify whether the residues of poles satisfy the general property of L-C two-port networks.                            (8)

 

             b.   A third-order Butterworth polynomial approximation is desired for designing a low-pass filter. Determine H(s) and plot its poles. Assume unity d-c gain constant.                                                      (8)