Flowchart: Alternate Process: JUNE 2008

Code: AE01/AC01/AT01                                                                  Subject: MATHEMATICS-I

Time: 3 Hours                                                                                                     Max. Marks: 100

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

Q.1      Choose the correct or best alternative in the following:                             (2 x 10)

 

a.                   The value of  is

 

(A)  3                                                   (B)  –3

(C)  limit does not exist             (D)  –1

 

b.                  If   then

 

(A)                              (B)

(C)                           (D)

 

c.                   If  , then the value of  is

 

(A)  1                                                   (B)  r

(C)  1/r                                                 (D)  0

 

d.                  The value of integral is equal to

 

(A)  – 4                                                (B)  3

(C)  4                                                   (D)  –3

 

e.                   The solution of the differential equation  under the condition y(1)=1 is given by

 

(A)                                   (B) 

(C)                                  (D)


f.          The particular integral of the differential equation  is

(A)                                    (B)

 

(C)                                    (D)

                       

g.                   The sum of the eigen values of   is equal to

 

(A)  6                                                   (B)  – 8

 

(C)  7                                                   (D)  – 6

 

 

 

h.         If .  Then, the matrix A is equal to

 

 

(A)                                           (B) 

 

(C)                                      (D) 

 

            i.          The value of  (m being an integer < n) is equal to

           

(A)  1                                                   (B)  –1

 

(C)  2                                                   (D)  0

 

 

            j.          The value of the   is

 

(A)                               (B)

 

(C)                                (D)


 

Answer any FIVE Questions out of EIGHT Questions.

Each Question carries 16 marks.

 

 

Q.2      a.         Compute  for the  function

Also discuss the continuity of   at (0,0).                                                 (8)

b.         Find  the  minimum   values  of    subject to the condition .                                                                                                             (8)

 

Q.3      a.         The function     is   approximated   by  a  first degree

Taylor’s polynomial about the point (2,3). Find a square  with centre at (2,3) such that the error of approximation is less than or equal to 0.1 in magnitude for all points within the square.                                              (8)

 

            b.         Find the Volume of the ellipsoid                                            (8)

 

Q.4      a.         Solve  the differential equation

                                                  (8)

 

b.                  Using the method of variation of parameters, solve the differential equation  .                                                                                               (8)

           

Q.5      a.         Find the general solution of  the equation .                     (8)

 

b.         The eigenvectors of a 3 x 3 matrix A corresponding to the eigen values1, 1, 3 are   respectively.  Find the matrix A.                       (8)

 

Q.6      a.         Test for  consistency and solve the system of equations

                                    (8)

 

b.                  Given that   show that  is a unitary matrix.                                                                                                                        (8)

 

Q.7      a.         Show that the transformation

 is non-singular. Find the inverse transformation.                                                                                    (8)

 

b.                  If  then show that .                                                  (8)

 

Q.8      a.         Find the power series solution about the origin of the equation

.                                                                           (11)

 

            b.         Find the value of   .                                                                                (5)

 

Q.9      a.         Prove the orthogonal property of Legendre Polynomials.                                    (8)

 

b.         Show that                                                                    (8)