Flowchart: Alternate Process: JUNE 2008Code: AC10                                                                         Subject: DISCRETE STRUCTURES

Time: 3 Hours                                                                                                     Max. Marks: 100

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

Q.1       Choose the correct or best alternative in the following:                                         (2x10)

          

             a.   If R is a relation “Less Than” from A = {1,2,3,4} to B = {1,3,5} then     RoR-1 is

                  

                   (A)  {(3,3), (3,4), (3,5)}                     

                   (B)  {(3,1), (5,1), (3,2), (5,2), (5,3), (5,4)}

                   (C)  {(3,3), (3,5), (5,3), (5,5)}           

                   (D)  {(1,3), (1,5), (2,3), (2,5), (3,5), (4,5)}

 

             b.   How many different words can be formed out of the letters of the word VARANASI?

 

                   (A)  64                                                (B)  120

                   (C)  40320                                          (D)  720

 

             c.   Which of the following statement is the negation of the statement “4 is even or -5 is negative”?

 

                   (A)  4 is odd and -5 is not negative      (B)  4 is even or -5 is not negative

                   (C)  4 is odd or -5 is not negative         (D)  4 is even and -5 is not negative

 

             d.   A complete graph of n vertices should have __________ edges.

 

                   (A)  n-1                                               (B)  n

                   (C)  n(n-1)/2                                       (D)  n(n+1)/2

 

             e.   Which one is the contrapositive of?

 

                   (A)                                          (B) 

                   (C)                                     (D)  None of these

 

             f.    A relation that is reflexive, anti-symmetric and transitive is a

 

                   (A)  function                                        (B)  equivalence relation

                   (C)  partial order                                 (D)  None of these

 

             g.   A Euler graph is one in which

 

                   (A)  Only two vertices are of odd degree and rests are even                                             

                   (B)  Only two vertices are of even degree and rests are odd

                   (C)  All the vertices are of odd degree 

                   (D)  All the vertices are of even degree

             h.   What kind of strings is rejected by the following automaton?

 
 

 


                  

 

 

                                

       

 

                    (A)  All strings with two consecutive zeros

                    (B)  All strings with two consecutive ones

                    (C)  All strings with alternate 1 and 0

                    (D)  None

 

             i.    A spanning tree of a graph is one that includes

 

                   (A)  All the vertices of the graph          

                   (B)  All the edges of the graph

                   (C)  Only the vertices of odd degree   

                   (D)  Only the vertices of even degree

 

             j.    The Boolean expression is independent to

 

                   (A)  A                                                 (B)  B

                   (C)  Both A and B                               (D)  None

 

 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

 

  Q.2     a.   Write the negation of each of the following in good English sentence.

                   (i)   Jack did not eat fat, but he did eat broccoli.

                   (ii)  The weather is bad and I will not go to work.

                   (iii)  Mary lost her lamb or the wolf ate the lamb.

                   (iv)  I will not win the game or I will not enter the contest.                              (2 x 4)

 

             b.   Simplify the logical expression .                               (8)

 

  Q.3     a.   How many different sub-committees can be formed each containing three women from an available set of 20 women and four men from an available set of 30 men?                                                       (8)

 

             b.   A box contains six red balls and four green balls. Four balls are selected at random from the box. What is the probability that two of the selected balls will be red and two will be green?                         (8)

 

  Q.4     a.   What is a partition on a set? Let A = {1,2,3,4,5} and a relation R defined on A is R={(1,1), (1,2), (2,1), (2,2), (3,3), (4,4), (4,5), (5,4), (5,5)}. Obtain the cells of the partition.                               (8)

 


             b.   What is a lattice? Which of the following graphs are lattice and why?                   (8)

 

 

 

 
 

 

 

 

 


                                     (a)                                  (b)                                       (c)                                                                                                                                    

 

 

  Q.5     a.   In a survey of 85 people it is found that 31 like to drink milk 43 like coffee and 39 like tea.  Also 13 like both milk and tea, 15 like milk and coffee, 20 like tea and coffee and 12 like none of the three drinks.  Find the number of people who like all the three drinks.  Display the answer using Venn Diagram.                                                                      (8)

 

             b.   Obtain the incidence and the adjacency matrix of the graph given below.             (8)

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 


  Q.6     a.   What are the possible ways to combine two automatons? Explain with an example.             (8)

 

             b.   Construct the finite automaton for the state transition table given below.               (8)

 

                                             a             b

                             start s0    s0               s2

 

                                    s1    s0               s1

 

                                   s2*    s2                     s1

 

  Q.7     a.   Prove that if  has a least element, then  has a unique least element.                 (8)

                  

                   b. Show that in a Boolean algebra, for any a and b, (a Λ b) V (a Λ b' ) = a.        (8)

            


  Q.8     a.   For the given graph, find the minimal spanning tree using Prim’s algorithm.                           (8)

 

 

 
                  

 

 

 

D
 
 

 


                                   

                                               

             b.   Show that is  and are equivalence relations on A, then  is an equivalence relation.                                                              (8)

 

  Q.9     a.   Write the Preorder, Inorder and Postorder tree traversal algorithm.                     (8)

 

             b.   Write down the steps of the Warshall’s algorithm.                                               (8)