ROLL NO.

Code: DE63/DE114

Subject: DIGITAL COMMUNICATIONS

DiplETE – ET (Current & New Scheme)

Time: 3 Hours

June 2019

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

• Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

- a. Auto-correlation function $R_X(\tau)$ of a stationary process X(t) is
 - (A) a deterministic function with maximum value at $\tau = 0$
 - (**B**) a deterministic function which is periodic
 - (C) a stationary random process
 - **(D)** a periodic stationary process

b. Entropy gives

- (A) Amount of information
- (B) Rate of information
- (C) Measure of uncertainty
- (D) probability of message

c. As the bandwidth approaches infinity, the channel capacity becomes (A) Infinite (B) Zero

(C) 1.44 s/η	(D) One

- d. The impulse response, h(t), of a Zero-order holding circuit is
 (A) an impulse
 (B) a rectangular pulse
 (D) a sinc pulse
- e. A bandlimited low pass signal is sampled at twice its Nyquist rate with $f_s = 2000$ sps. The signal is bandlimited to

(A) 250 Hz	(B) 1000 Hz
(C) 500 Hz	(D) 2000 Hz

- f. In a linear DM system,
 - (A) only granular noise will be present
 - (B) only slope overload noise will be present
 - (C) both granular as well as slope overload noise can be eliminated

1

(D) granular noise will be present but slope overload noise can be avoided by proper design

ROLL NO.

Subject: DIGITAL COMMUNICATIONS

g.	The extent of maximum eye opening	in the vertical direction indicates,
	(A) IS1	(B) Timing Sensitivity
	(C) Zero-crossing jitter	(D) Noise Margin
h.	The signal space diagram of a QPSK	system has a dimension of
	(A) 1	(B) 3
	(C) 4	(D) 2
1.	For a given set of m signals, using C n orthonormal signals have been deri (A) $n = m$ (C) $n \le m$	ved where (B) $n < m$ (D) $n \ge m$
j.	The maximum length of a PN seques shift register is	ence that can be generated using a 4-stage
	(A) 15	(B) 8
	(C) 16	(D) 4

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Discuss the various signal processing operations in digital communication with necessary diagram.(8)
 - b. A Gaussian channel has 1 MHz bandwidth, calculate the channel capacity if the signal power to noise spectral density ratio (s/η) is 10^5 Hz. Also find the maximum information rate. (8)
- Q.3 a. With neat diagram, explain TDM.
 - b. Compare Natural sampling and flat top sampling with necessary equations and waveforms. (8)
- Q.4 a. Derive the quantization noise and SNR of a PCM system for sinusoidal input signal. (8)
 - b. With neat diagram, explain Delta Modulation and demodulation process. (8)
- Q.5 a. What is an eye pattern? Draw a generalized eye pattern and label the various interpretations possible.(8)
 - b. Perform correlative coding with pre-coder and without pre-coder for the following data bits. (8) 1100011011101
- Q.6 a. Distinguish between coherent and non-coherent reception. (4)
 - b. What is QPSK? Draw the signal constellation of QPSK scheme and explain how a QPSK signal may be generated. (12)

(8)

2

ROLL NO. ____

Code: DE63/DE114

Q.7	a.	With neat diagram, explain Matched filter receiver.	(10)
	b.	Explain Gram-Schmidt Orthogonalization procedure.	(6)
Q.8	a.	With the help of a neat block diagram, explain the working of a DS-SS scheme.	(10)
	b.	What are PN sequences? Discuss their characteristics.	(6)
Q.9		 Write short notes on (ANY TWO) (i) Signal Distortion in sampling (ii) Applications of waveform coding techniques (iii) Applications of Spread Spectrum Modulations (iv) Applications of Digital Modulation techniques 	(16)