Code: DE57 Subject: NETWORKS & TRANSMISSION LINES

DiplETE - ET (Current Scheme)

Time: 3 Hours

June 2019

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
 - Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. If $A^2 BC = 1$, the circuit is
 - (A) Balanced

- (B) Reciprocal
- (C) symmetrical and reciprocal
- (D) Reciprocal and Bilateral
- b. h₂₁, in terms of z-parameters can be expressed as
 - (A) $\Delta z/z_{22}$

(B) $\Delta z/z_{12}$

(C) $z_{12}/\Delta z$

- **(D)** $-z_{21}/z_{22}$
- c. In RLC circuit R = 45Ω L=0.06H and C=0.6 μ F, the power factor will be
 - (A) Unity

(B) Zero

(C) Lagging

- (**D**) Leading
- d. In a series resonant circuit, the impedance of the circuit will be
 - (A) Minimum

(B) Maximum

(C) Infinite

- (D) Zero
- e. $\frac{1}{s+a}$ is the Laplace transform of
 - $(A) e^{at}$

(B) e^{-at}

(C) $\frac{1}{e^{-at}}$

- (**D**) None of these
- f. A BPF may be obtained by using a high pass filter followed by a
 - (A) LPF

(B) HPF

(C) RC filter

- (**D**) None of these
- g. Distortion-less condition of a transmission line is given by
 - (A) $Z_0 = \sqrt{L/C}$

(B) R/G = L/C

(C) $R \cdot G = L \cdot C$

(D) $Y = \sqrt{\frac{1}{LC}}$

(8)

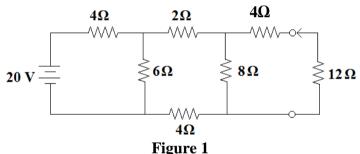
(8)

Code: DE57 Subject: NETWORKS & TRANSMISSION LINES

- h. A Smith chart is used in solving problems in
 - (A) Radiowave propagation
- **(B)** Transmission lines

(C) Aerial system

- (**D**) any where in the line
- i. The characteristic impedance of a transmission line is
 - (A) Real


(B) Inductive

(C) Capacitive

- (D) Complex
- j. Propagation constant parameter is used in
 - (A) symmetrical network
- (B) asymmetrical networks
- (C) Both types as in (A) and (B)
- **(D)** Inverse networks

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Explain π -T Equivalent theorem with the help of suitable example.
 - b. Find the current following through 12Ω resistor as shown in Fig.1 using Thevenin's Theorem. (8)

- **Q.3** a. Derive the Laplace transform of unit impulse function.
 - b. Voltage $V(s) = \frac{1 + 2e^{-s} e^{-2s}}{s^2}$ is applied as input to a series RL circuit with

R=3 Ω and L=3H. Calculate i(t) using Laplace transform through the circuit.

[Assume i(0⁺)=0] (8)

- **Q.4** a. Explain the characteristic curve of a parallel R-L-C circuit. (8)
 - b. A series RLC circuit has $R=2\Omega$ and $X_C=5\Omega$ and inductance is impure having its resistance 3Ω and inductive reactance of 1Ω . Find the input impedance and circuit current. Also calculate the frequency of resonance. Supply is 100V, 50 Hz. (8)
- Q.5 a. Explain the term characteristic impedance and propagation constant of a transmission line. (8)
 - b. A lossless transmission line has a shunt capacitance of 100 pF/m and a series inductance of 4μH /m. What is its characteristic impedance?

ROLL NO.	

Code: DE57

Subject: NETWORKS & TRANSMISSION LINES

- Q.6 a. Explain significance of Poles and Zeros in network functions. (8)
 - b. The Z-parametrs of a two port are: $Z_{11} = 10\Omega, Z_{22} = 20\Omega, Z_{12} = Z_{21} = 5\Omega$ Find the ABCD parameters. (8)
- Q.7 a. Determine the input impedance of a lossless short circuited line. (8)
 - b. Explain the term Quarter wave transformer in transmission lines. (8)
- **Q.8** a. Draw T & π sections of a constant K high pass filter. Derive an expression for cut-off frequency. (4+4)
 - b. Design a symmetrical bridge T-attenuator with attenuation of 40 dB and design impedance of 600Ω . (8)
- **Q.9** a. Define: (2×4)
 - (i) Bilateral and unilateral elements
 - (ii) Linear and nonlinear elements
 - (iii) Resistance parameter
 - (iv) Ideal voltage source
 - b. What is Mutual Induction? Explain working principle of two mutually coupled Inductor.(8)