Code: DE55/DC55

Subject: ENGINEERING MATHEMATICS - II

ROLL NO.

DiplETE – ET/CS (Current Scheme)

Time: 3 Hours

June 2019

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

- a. f(x) = |x| is ______ at x = 0. (A) differentiable but not continuous (B) continuous but not differentiable (C) differentiable and continuous (D) neither differentiable nor continuous b. $\lim_{x\to 0} \frac{\sin x}{x}$ (A) 0 (B) 1 (C) ∞ (D) does not exist
- c. $\int_{0}^{\frac{\pi}{2}} \sin^{3} x \cos^{4} x \, dx =$ (A) $\frac{2}{35}$ (B) $\frac{1}{35}$ (C) $\frac{8}{35}$ (D) $\frac{4}{35}$
- d. The modulus of the complex number $\frac{1+2i}{1-3i}$ is (A) $\frac{1}{2}$ (B) $-\frac{1}{2}$ (C) $\frac{1}{4}$ (D) $\frac{1}{\sqrt{2}}$
- e. Which of the following is a vector?
 (A) distance
 (B) speed
 (C) weight
 (D) area

(C) **t**

ROLL NO.

f.	The P.I. of $(D^2 + 4)y = \cos 2x$ is	
	$(\mathbf{A}) A \cos 2x + B \sin 2x$	$(\mathbf{B}) \frac{\mathbf{x}}{4} \cos 2\mathbf{x}$
	$(\mathbf{C})\frac{\cos 2x}{8}$	(D) $\frac{x}{4} \sin 2x$

- g. Which of the following function is an odd function? (A) $x \sin x$ (B) $x \cos x$ (C) $x \tan x$ (D) $x + x^2$
- h. $L{\sinh 2t} =$ (A) $\frac{2}{s^2 + 4}$ (B) $\frac{s}{s^2 + 4}$ (C) $\frac{2}{s^2 - 4}$ (D) $\frac{s}{s^2 - 4}$ i. $L^{-1} \left[\frac{2}{s}\right] =$ (A) 2 (B) 2t
- j. If the position vectors of A and B are 2i 9j 4k and 6i 3j + 8krespectively, then $\overrightarrow{AB} =$ (A) 4i + 6j + 12k (B) -4i - 6j - 12k(C) 8i - 12j + 4k (D) 8i + 12j + 12k

(D) 0

Answer any FIVE questions out of EIGHT Questions. Each Question carries 16 marks.

a. Verify Rolle's theorem for $(x-a)^m(x-b)^n$ where m, n are positive integers Q.2 in **[a,b]**. (6) b. Using Maclaurin's series expand $\tan x$ upto the term containing x^3 . (5) c. Evaluate $\lim_{x\to 1} \frac{x^x - x}{x - 1 - \log x}$. (5) a. Find the reduction formula for $\int_{0}^{\frac{\pi}{2}} \sin^{m} x \cos^{n} x \, dx$. Q.3 (8) b. Find the area common to the parabola $y^2 = ax$ and the circle $x^2 + y^2 = 4ax$. (8) a. Use DeMovire's theorem to solve $x^4 - x^3 + x^2 - x + 1 = 0$. **Q.4** (8) b. Find the complex number z if $arg(z+1) = \frac{\pi}{6}$ and $arg(z-1) = \frac{2\pi}{3}$. (8)

ROLL NO.

(8)

(8)

(8)

Code: DE55/DC55

Subject: ENGINEERING MATHEMATICS - II

Q.5 a. Solve
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = xe^{3x} + \sin 2x.$$
 (8)

- b. A horizontal tie rod is freely pinned at each end. It carries a uniform load w lb per unit length and has a horizontal pull P. Find the central deflection and the maximum pending moment, taking the origin at one of its ends.
- **Q.6** a. Expand $f(x) = |\cos x|$ as a Fourier series in the interval $-\pi < x < \pi$. (8)
 - b. Obtain the first three coefficients in the Fourier cosine series for *y*, where *y* is given in the following table:

x	0	T	T	T	2T	5 <i>T</i>	T
		6	3	2	3	6	
у	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

Q.7 a. Find the Laplace transform of $te^{-4t} \sin 3t$.

b. Evaluate
$$\int_0^\infty \frac{e^{-t} \sin^2 t}{t} dt$$
 using transform method. (8)

Q.8 a. Apply Convolution theorem to evaluate
$$L^{-1}\left(\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right)$$
. (8)

- b. Use transform method to solve $y'' 3y' + 2y = 4t + e^{3t}$ when y(0) = 1 and y'(0) = -1. (8)
- Q.9 a. Prove that four points 4i + 5j + k, -(j + k), 3i + 9j + 4k, 4(-i + j + k) are coplanar. (8)
 - b. Forces of magnitudes 5 and 3 units acting in the directions 6i + 2j + 3k and 3i 2j + 6k respectively act on a particle which is displaced from the point (2,2,-1) to (4,3,1). Find the work done by the forces. (8)