ROLL NO.

Code: DE52/DC52/DE102/DC102

Sub: FUNDAMENTALS OF ELECTRICAL & ELECTRONICS ENGG.

DiplETE - ET/CS (Current & New Scheme)

June 2019 Time: 3 Hours Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions, selecting at

Q.1	Choose the correct or the best alternative in the following:		$(2\times10^{\circ})$	
	a. Oscillators employ(A) no feedback(C) positive feedback	(B) negative feedback(D) either negative or positive feed	lback	
	 b. While calculating R_{th} in Thevenin's theorem and Norton equivalent (A) Only current sources are made dead (B) Only voltage sources are made dead (C) All voltages & current sources are made dead (D) All independent sources are made dead 			
	c. One of the common application of Zene(A) Rectifier(C) Clipper	r diode is a (B) simple voltage reference source (D) emitter follower	e	
	 d. A star connected load has each element branch elements of delta circuit will be (A) 1 Ohms (C) 6 Ohms 	•		
	e. The difference between the synchronous induction motor is called(A) Regulation(C) Slip	s speed and the actual speed of an (B) Back lash (D) Lag		
	f. The speed of a DC motor may be varied(A) field current(C) Resistance in series with armature	by varying (B) applied voltage (D) any of these		
	g. A zener diode is operated in(A) Breakdown region(C) Cut-off region	(B) forward region(D) none of these		
	h. The number of diodes needed for a bridge (A) Six	ge rectifier is (B) Four		

(D) One

(C) Two

Code: DE52/DC52/DE102/DC102

Sub: FUNDAMENTALS OF ELECTRICAL & ELECTRONICS ENGG.

	 Whenever a conductor cuts magnetic flux, an emf is induced in that conductor; above statement is based on 			
	(A) Faraday's law	(B) Joule's law		
	(C) Weber and Ewing's theory	(D) Coulomb's law		
	j. In case of DC series motor after sat	turation of magnetic core the relation betw	een	
	torque and armature current is	(D) T. 1.2		
	(A) ΤαΙα	(B) $T\alpha Ia^2$		
	(C) Taø Ia	(D) T is constant		
	PAR' Answer at least TWO questions.			
Q.2	a. State and explain lenz's law and faraday's law of electromagnetic induction. (8)			
	b. Describe qualitatively and quantitatively the force between long parallel curre carrying conductors.		nt (8)	
Q.3	a. State and explain Thevenin's theorem with suitable example.		(8)	
	b. Draw and Explain AC equivalent circuit of a diode.		(8)	
Q.4	a. Derive EMF equation of DC motor.		(8)	
	b. A 6-pole, lap wound armature has 840 conductors and flux per pole of 0.018 Calculate the EMF generated when the machine is running at 600rpm.		/b. (8)	
Q.5	a. Derive the EMF equation of a single transformation ratio?	phase transformer. What is the voltage	(8)	
	(ii) The voltage induced in the second		(8)	
	PAR	Г- В		
	Answer at least TWO questions.	Each question carries 16 marks.		
Q.6	a. Discuss the process of doping in a sv	witching diode. What is reverse recovery ti	me? (8)	
	b. Distinguish between avalanche and	zener breakdown in p-n junction diode.	(8)	
Q.7	a. With the help of neat diagram, expla	in zener diode voltage regulator.	(8)	
	 Sketch circuit diagram and input-output waveforms of a negative series clipp circuit and positive shunt clipper circuits. 		r (8)	
Q.8	a. How BJT works as a switching device	ce?	(8)	
	b. Why we need biasing in transistors. Which biasing is considered to be the beat biasing circuit and why? Draw a Circuit and illustrate your Answer.		(8)	
Q.9	a. Explain half power points.		(8)	
	b. What are the advantages of negative	feedback on an amplifier?	(8)	