Code: DE107

Subject: NETWORKS & TRANSMISSION LINES

ROLL NO. _

DiplETE – ET (New Scheme)

Time: 3 Hours			June	2019	Max. Marks: 100			
 PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER. NOTE: There are 9 Questions in all. Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else. The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination. Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks. Any required data not explicitly given, may be suitably assumed and stated. 								
Q.1	Choo	ose the correct of	or the best alterna	tive in the following	g: (2×10)			
	a.	What should Laplace Transignal? (A) On L.H.S (C) On both	be location of po asform especially S of ROC sides of ROC	les corresponding for determining th (B) On R.F (D) None o	to ROC for bilateral Inverse e nature of time domain I.S of ROC f these			
	b.	 Which result is obtained by the addition of a step to a ramp function (A) Step function shifted by an amount equal to ramp (B) Ramp function shifted by an amount equal to step (C) Ramp function of zero slop (D) Step function with zero slop 						
	c.	Thevenin's v	voltage is equal to	the voltag	e across the terminals.			
		(A) Short cir(C) Open cir	cuit, input cuit, output	(B) (D)	Short circuit, output Open circuit, input			
	d.	 According to Millman's Theorem, if there are n voltage sources with n internal resistances respectively, which are in parallel, then these sources are replaced by? (A) Single current source I' in series with R' (B) Single voltage source V' in series with R' (C) Single current source I' in parallel to P' 						
		(D) Single voltage source V' in parallel to R'						
	e.	e resonant frequency of						
		(A) 220 Hz (C) 0.454 Hz	<u>r</u>	(B) (D)	2.2 Hz 22 Hz			

			ROLL NO
Cod	e: DE1	.07 Subject: NETWORKS &	TRANSMISSION LINES
	f.	In a simple RC high pass filter the desired roll o $=10\mu$ F, The value of R is	f frequency is 15 Hz and C
		$(\mathbf{A}) \ 2.25 \mathrm{K}\Omega \tag{\mathbf{B}}$	1.06 ΚΩ
		(C) $7.87 \text{ K}\Omega$ (D)	15.23 ΚΩ
	g.	When power cables are laid in proximity of comminimum horizontal and vertical clearance for se (A) 1.0 m (B)	munication cables, what is the paration of these two cables? 0.6 m
		(C) 2.4 m (D)	4.0 m
	h.	When bundle conductor are used in place of sing inductor and capacitance will respectively	le conductor, the effective
		(A) Decrease and increase (B) Inc	rease and decrease
		(C) Increase and remain unchanged (D) De	ecrease and remain unchanged
	i.	The expression of bandwidth for series resonant	circuit is?
		$(\mathbf{A}) \mathbf{R}/\mathbf{L} \tag{\mathbf{B}}$	L/R
		$(\mathbf{C}) \mathbf{LR} \tag{D}$	RLC
	į.	Shape of the resonance curve depends upon the?	
	5	$(\mathbf{A}) \mathbf{O} \text{-factor} \qquad (\mathbf{B})$	Voltage
		(C) Current (D)	Either voltage or current
		Answer any FIVE Ouestions out of EIGHT	' Ouestions.
		Each question carries 16 marks.	
Q.2	a.	Find the inverse Laplace transform of $\frac{s+1}{s^2+s+1}$.	(8)
	b.	Find the time domain current $i(t)$ if its Laplace tr	cansform is $I(s) = \frac{s-10}{s^4 + S^2}$ (8)
Q.3	a.	figure as functions of s	
		$1\Omega \qquad 1H \\ 0 \qquad 0$	(8)
	b.	Obtain the h and y parameters of the two-port as	given in figure
		$\begin{array}{c} 300 \Omega \\ \hline \\ 10 \Omega \\ \hline \\ V_x \\ \hline \\ 100 \Omega \\ \hline \\ \hline \\ 10 V_x \\ \hline \\ \end{array}$	- (8)

DE107/June 2019

Code: DE107

ROLL NO.

(8)

(8)

(8)

Q.4 a. Calculate the Thevenin's Equivalent voltage and impedance of the given figure as seen from the terminal x and y. Assume an Ideal transformer

b. Find current through 25 ohm resistor and power dissipated by it in the given circuit, using Millman's theorem

Q.5 a. A 50 Ω line is terminated to a load with unknown impedance. The standing wave ratio s = 2.4 is on the line and a voltage maximum occurs at $\lambda/8$ from the load,

i) Determine the load impedance,

- ii) How far is the first minimum voltage from the load? (8)
- b. For a lossless two-wire transmission line, show that i) The phase velocity $u = c = \frac{1}{\sqrt{LC}}$
 - ii) The characteristic impedance $Z_0 = \frac{120}{\sqrt{\varepsilon_r}} \cosh^{-1} \frac{d}{2a}$ (8)
- **Q.6** a. In the Fig. given below, let $R_1 = R_2 = 2 k\Omega$, L= 10 mH, and C = 40 nF. Find the resonant frequency and bandwidth, and compare with the results for $R_1 = 0$ (pure Parallel circuit).

Code: DE107

 Roll NO.

 Subject: NETWORKS & TRANSMISSION LINES

	b.	Derive the resonance frequency, Q factor and damping factor for parallel R circuit.	LC (8)		
Q.7	a.	A 50 ohm load line feeds an inductance load $Z = 35 + j 35$ ohm. Design a double stub tuner to match the load of the line (make use of smith'S Chart)	(8)		
	b.	What are the special consideration of radio frequency lines ? A radio frequency line with $Z_0 = 70$ ohm is terminated by $Z_l = 115 - j \ 80$ ohm at $\lambda = m$. Find the VSWR and maximum and minimum line impedances	2.5 (8)		
Q.8	a.	A 50-ohm line feeds a half-wave dipole antenna with impedance of 73+j4 ohms. The line has matched-line loss of 3 dB. What is the total loss of the line? What is the SWR at the load and at the line input? If the line length doubled, what is the matched-line loss, the total loss, the input and load SWRs?			
	b.	Write short notes on i) Reflection coefficient ii) Impedance matching device	(8)		
Q.9	a.	Write a short note on m-derived filter & derive the formula of 'm' for m- derived low pass filter section.	(8)		
	b.	Derive the design equation for symmetrical 'T-attenuator	(8)		