ROLL NO. _

Code: AE77/AC77/AE121

Subject: DIGITAL SIGNAL PROCESSING

AMIETE – ET/CS (Current & New Scheme)

Time: 3 Hours

June 2019

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10) a. The system y(n) = |x(n)| is

- (A) Static, non-linear, causal, time-invariant
- (B) Dynamic, linear, causal, time-invarient
- (C) Static, linear, causal, time-invarient
- (D) Static, linear, causal, time-varient

b. A digital signal is

- (A) Continuous in time, discrete in amplitude
- (B) Discrete in time , continuous in amplitude
- (C) Continuous in time, continuous in amplitude
- (D) Discrete in time, discrete in amplitude
- c. What kind of filter is an ideal Hilbert transformer?
 - (A) Low pass(B) High pass(C) Band pass(D) All pass
- d. The speed improvement factor involved in the direct evaluation of DFT vs FFT algorithm, for N= 256 is

(A)32	(B) 128
(C) 256	(D) 64

e. Parallel form of realization is done in
(A) High speed filtering applications
(B) Low speed filtering applications
(C) Both (A) and (B)
(D) None of these

1

- f. DFT is applied to
- (A) Infinite sequences
- (C) Continuous Infinite signals
- **(B)** Finite discrete sequences
- (**D**) Continuous finite sequences

ROLL NO. _

Code: AE77/AC77/AE121	Subject: DIGITAL SIGNAL PROCESSING	
g. Which of the following windows gives a lowpass filter with high transition band		
(A) Rectangular window	(B) Triangular window	
(C) Hamming window	(D) Blackman window	
h.The Fourier transform of a conjugate symmetric function is always		
(A) Imaginary	(B) Conjugate anti-symmetric	
(C) Real	(D) Conjugate symmetric	
i. The 4 point DFT of {1, 1, 0, 0} is		
(A) $\{2,0,2,0\}$	(B) $\{0,4,0,0\}$	
(C) $\{2,1+j2,-2,1-j2\}$	(D) $\{2,1-j,0,1+j\}$	

j. The condition on impulse response for a linear phase FIR filter is

(A) h(n) = h(N-1)(B) h(n) = h(N-n)(C) h(n) = h(N-1-n)(D) h(n) = -h(N-n)

Answer any FIVE Questions out of EIGHT Questions. Each Question carries 16 marks.

Q.2	a. What is need of FFT algorithm? Explain the computational requirements involved in	
	radix 2 FFT algorithm.	(4)
	b. A designer has a number of 8 point FFT chips. Show explicitly, how he should interconnect three such chips in order to compute a 24 point DFT?	(8)
	c. What is meant by radix-2 FFT?	(4)
Q.3	 a. By means of DFT and IDFT determine the response of FIR Filter with impulse h(n)={1, 2, 3} to the input sequence x(n)={1, 2, 2, 1}. 	e response (6)
	b. Compute Fourier Transform X(w) and the six point DFT X(K) of the signal x(n)={3, 2, 1, 0, 1, 2}	(6)
	 c. Compute linear and circular convolutions for the following using graphical me x(n) = [0, 1, 1, 2], h(n) = [-1, 2, 3] 	thod. (4)
Q.4	a. Use the Bilinear transformation to convert the analog filter with the system function. $H(s) = \frac{s+0.1}{(s+1)(s+1)+9}$ into a digital IIR filter. Select T= 0.1 and compare the location of the zeros obtain by applying the Impulse Invariance method in the conversion of H(s)	
		(8)

b. Design an FIR filter to meet the following specifications. Pass band edge = 2 kHz, Stop band edge = 5 Hz, Stop band attenuation= 42 db, Sampling frequency=20Hz (8)

2

ROLL NO.

Code: AE77/AC77/AE121

Subject: DIGITAL SIGNAL PROCESSING

Q.5 a. Realize the following IIR system by cascade and parallel forms (8) $y(n) + \frac{y(n-1)}{4} - \frac{y(n-2)}{8} = x(n) - 2x(n-1) + x(n-2)$

- b. For the given linear phase filter determine the number of delays and adders used in (i) direct farm (ii) cascade (iii) linear phase type I (iv) linear phase type II (8)
- Q.6 a. Determine the range of values of the parameter *a* for which the LTI system with impulse response $h(n) = a^n u(n)$ is stable. (6)
 - b. What are the different types of operations performed in discrete time signals? (4)
 - c. By direct evaluation of convolution sum, determine the setp response of an LTI system. Whose impulse response is $h[n] = a^{-n} u[n], 0 < a < 1$ (6)
- - b. Explain with example overlap add and overlap save method to compute periodic convolution. (8)
- **Q.8** Consider the analog signal $X_a(t) = 3\cos(100\pi)t$ (a) Determine the minimum sampling rate required to avoid aliasing. (2) (b) Suppose that the signal is sampled at the rate $F_s = 200 \text{ Hz}$. What is the discrete time
 - signal obtain after sampling? (4)
 (c) Suppose that the signal is sampled at the rate F_s= 75 Hz . What is the discrete time signal obtain after sampling? (4)
 - (d) What is the freq. of sinusoids that yields samples identical to those obtain in part-c? (6)
- Q.9 a. A discrete system is given by the following difference equation y(n) - 5y(n-1) = 4x(n-1) + x(n), where x(n) is input and y(n) is output. Determine its magnitude and phase response as a function of frequency. (8)
 - b. Find Hilbert transform of (i) $e^{j\omega t}$ (ii) $\frac{\sin t}{t}$ (8)