Code: AE74/AE122/AC122

ROLL NO.

Subject: VLSI DESIGN

AMIETE – ET/CS (Current & New Scheme)

Time: 3 Hours

June 2019

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best alternative in the following:		(2×10)	
	a. Noise margin is a measure of c			
	(A) Noise voltage	(B) signal Voltage		
	(C) DC Bias	(D) V _{th}		
	b. Scan path approach is implemented in			
	(A) LSSD	(B) BST		
	(C) Both (A) and (B)	(D) Logical Redundancy		
	c. The Precharge bus concept limits the following effect			
	(A) Bus Resistance	(B) Bus Capacitance		
	(C) Delay Reduction	(D) Fast Switching		
	d. What is the range for LSI?			
	(A) 10	(B) 100-1000		
	(C) 1000-20000	(D) 100000		
	e. The $Z_{P,U}/Z_{P,D}$ for an inverter driven by an inverter is			
	(A) 4	(B) 2		
	(C) 8	(D) 16		
	f. Pale Green color in stick encoding scheme represents			
	(A) Polisilicon-2	(B) Polisilicon-1		
	(C) Via	(D) Buried Collector		
	g. DRC at subsystem level is used to check			
	(A) Correct Wiring up of Leaf	Cells		
	(B) Correct Butting			
	(C) Both (A) and (B)			
	(D) Correct mask making			

1

ROLL NO. _____

Code: AE74/AE122/AC122

Subject: VLSI DESIGN

	h.	What likely is to happen when Analo	og and Digital signal lines go in close				
		(A) Cross Talk	(B) No Cross Talk				
		(C) V_{th} Increases	(D) More Reliable				
	i. Which model is suitable to represent a "stuck-at" fault?						
		(A) Mathematical model	(B) Physical Model				
		(C) Logical Model	(D) None of these				
	j. Which one is suitable for Testability?						
		(A) Controllability	(B) Legibility				
		(C) Reliability	(D) Availability				
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.							
Q.2	a.	Determine $Z_{P.U}/Z_{P.D.}$ for an nMOS is	nverter driven through one pass transistor.	(6)			
	b.	 Explain all types of encoding schemes for nMOS, CMOS and BiCMOS devices in a tabular form. 					
Q.3	a.	Discuss the logical approach to driv	e a load in BiCMOS inverter design.	(4)			
	t room temperature following measurements $V_{DS}=4V$ $I_D=144\mu A$ and the pro $2\Phi_F \mid = 0.64 \text{ V \& N_A}=10^{16}/\text{cm}^3$ by effect coefficient. Assume oxide charge	(8) cess					
	c.	For an enhancement type MOS measured. $V_{T0} = 0.8V$, $\gamma = 0.2V^{1/2}$, $ 2\Phi_F $ $V_{BS} = 0V \& I_D = 0.24$ mA. Find W/L.	transistor the following parameters were =0.84V, $K'=20\mu A/V^2$, $V_{GS}=2.8$ V, $V_{DS}=$	(4) =5V,			
Q.4	a.	Discuss advantages of Layout and I	Design rules.	(4)			
	b.	Explain lambda- based design rules	for nMOS, pMOS and CMOS transistors.	(8)			
	c.	Draw stick diagrams (nMOS and C	MOS) for 2-input NAND gate.	(4)			
Q.5	a.	Discuss Rise and fall time factors for	or a CMOS inverter.	(6)			
	b.	Discuss Parity generator using badiagrams.	asic one-bit cell. Also draw suitable stick	(6)			
	c.	Explain how super buffers are helpf	ul in delay reduction.	(4)			

2

ROLL NO. _____

Code: AE74/AE122/AC122			Subject: VLSI DESIGN	
Q.6		Discuss limitations of scaling in details.	()	16)
Q.7	a.	Explain Pseudo-nMOS and Dynamic logics in det	ail. (12)
	b.	Discuss the concept of Manchester carry-chain.		(4)
Q.8	a.	What is a carry look ahead adder? Discuss Optin adder.	nization techniques for such an (10)
	b.	Discuss the design of a pseudo-static RAM cell.		(6)
Q.9	a.	Explain Built-In-Self-Test.		(8)
	b.	Discuss various CAD Tools for Design and Simul	ations.	(8)