Code: AE67/AE118

Subject: DIGITAL COMMUNICATIONS

ROLL NO.

AMIETE – ET (Current & New Scheme)

Time: 3 Hours

June 2019

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER. NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- **Q.1** Choose the correct or the best alternative in the following: (2×10) a. Two orthogonal signals $S_1(t)$ and $S_2(t)$ satisfy the relation:

(A)
$$\int_{0}^{T} S_{1}(t)S_{2}(t)dt = 0 \qquad (B) \int_{0}^{T} S_{1}(t)S_{2}(t)dt = 1$$

(C)
$$\int_{0}^{T} S_{1}(t)S_{2}(t)dt = \infty \qquad (D) \int_{0}^{T} S_{1}(t)S_{2}(t)dt = \pi$$

- b. Amount of information in a continuous signal is :
 (A) Zero
 (B) 2 bits
 (C) 4 bits
 (D) Infinite
- c. Quadrature multiplexing is a form of:
 (A) TDM
 (B) FDM
 (C) TDM & FDM
 (D) None of these
- d. The capacity of a channel is :
 - (A) Number of digits used in coding
 - (B) Volume of information it can take
 - (C) Maximum rate of information transmission
 - (D) Bandwidth required for information

e. The signal to quantization noise ratio in a PCM system depends on

- (A) Sampling rate(B) No. of quantization levels(C) Message signal bandwidth(D) None of these
- f. In PCM system output S/N increases:
 (A) Linearly with bandwidth
 (C) Inversely with bandwidth
 (B) Exponentially with bandwidth
 (D) None of these
- g. A signal of maximum frequency of 10 kHz is sampled at Nyquist rate. The time interval between two successive samples is:
 (A) 100#5

(A) 100	μs	(B)	50 ^µ
(C) 100	0 μs	(D)	5 <mark>#\$</mark>

			ROLL NO		
Cod	e: AE67/AE118 Sub	oject: DIGITAI	COMMUNICATION	NS	
	 h. Entropy is basically a measure of : (A) Rate of information (C) Probability of information 	(B) Average of ir (D) Disorder of in	nformation nformation		
	 i. If the sampling time is less than the I (A) Simple filter can be used to obta (B) Bandwidth increases (C) Channel capacity increases (D) Guard time become less 	Nyquist interval : in the original sign	al		
	j. Compander are used in communicati(A) compress bandwidth(C) improve signal to noise ratio	on system to: (B) improve frequ (D) All of these	iency response		
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.					
Q.2	a. Draw and explain coherent binary p Also plot its constellation diagram a its constellation points.	hase shift keying tı nd determine minir	ransmitter and Receiver. num distance between	(8)	
	b. Explain generation and detection of	QPSK scheme.		(8)	
Q.3	a. Consider the signals $S_1(t)$, $S_2(t)$, $S_3(t) = \begin{cases} 1 \text{ for } 0 \le t \le T/3 \\ 0 & otherwise \end{cases}$ $S_3(t) = \begin{cases} 1 \text{ for } T/3 \le t \le T \\ 0 & otherwise \end{cases}$ Using the Gram-Schmidt orthogonalizathis set of signals.	(t) and $S_4(t)$ defi $S_2(t) = \begin{cases} 1 \text{ for } 0 \le 0 \\ 0 \end{cases}$ $S_4(t) = \begin{cases} 1 \text{ for } 0 \le 0 \\ 0 & 0 \end{cases}$ ation process find a	ned as follows. $\leq t \leq 2T/3$ otherwise $\leq t \leq T$ therwise in orthogonal basis for	(8)	
	b. Determine the impulse response of m	natched filters.		(8)	
Q.4	a. What is Pseudo noise sequence?			(4)	
	b. A pseudo noise sequence is generate $m = 4$. The chip rate is 10^7 chips per chip duration of PN sequence. (iii) F	ed using a feedback second. Find (i) Pl PN sequence period	shift register of length N sequence length. (ii)	(8)	
	c. Write properties of Maximal-Length	Sequence.		(4)	
Q.5	a. Show that discrete pulse amplitude n power and bandwidth utilization.	nodulation is efficie	ent scheme in terms of	(8)	
	b. Intersymbol interference (ISI) is a n transmission system, explain mather	najor source of bit on the matically.	error in a baseband pulse	(8)	

2

Code	e: AE67/AE118	Subject: DIGITAL COMMUNICATIO	DNS
Q.6	a. State and prove sampling	theorem for low pass signal and band pass signal.	(8)
	b. How TDM system introd neat diagram.	luces a bandwidth expansion? Explain with the help of	(8)
Q.7	Write short note on any tw (i) Digital Multiplexer (ii) Light wave Transmiss (iii) CDMA	vo of the following sion	(8+8)
Q.8	a. What is Compression Law PCM systems?	v? What type of companding circuitry is used in actual	(5)
	 b. A PCM systems uses a u The bit rate of the system (i) What is the maximum satisfactorily? (ii) Determine the output sinusoidal modulating water 	iniform quantizer followed by a 7-bit binary encoder. In is equal to $50 \ge 10^6$ b/s. It message bandwidth for which the system operates signal to (quantization) noise ratio when a full load ave of frequency 1 MHz is applied to the input.	(5) (6)
Q.9	a. A computer executes fou words (00, 01, 10, 11). A with probabilities (1/2, 1/ number of bits used for th optimum source code. Co	ar instructions that are designated by the code ssuming that the instructions are used independently /8, 1/8, 1/4), calculate the percentage by which the he instructions may be reduced by the use of an onstruct a Huffman code to realize the reduction.	(10)
	b. What is transition probabi theoretical and practical i	ility of Binary Symmetric Channel? List the importance of Binary Symmetric Channel.	(6)

ROLL NO. _____

3