ROLL NO. _

Code: AE54/AC54/AT54/AE104

Subject: LINEAR ICs & DIGITAL ELECTRONICS

AMIETE – ET/CS/IT (Current & New Scheme)

Time: 3 Hours

June 2019

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions, selecting at least TWO questions from each part, each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a.	Which is sequential circuit?	
	(A) Mux	(B) Decoder
	(C) Encoder	(D) Counter
b.	10 ³ components are found in	_ ICs.
	(A) SSI	(B) MSI
	(C) LSI	(D) VLSI
c.	Which is active device?	
	(A) Resistor	(B) Capacitor
	(C) Inductor	(D) Transistor
d.	Which is Universal Gate?	
	(A) NAND	(B) AND
	(C) OR	(D) XOR
e.	In amplifier circuit Gain & Bandwid	th is
	(A) Proportional	(B) Inversely Proportional
	(C) None of these	(D) Any of these
f.	The number of Flip-Flop required fo	r modulo 9 counter is
	(A) 4	(B) 5
	(C) 6	(D) None of these
g.	The slew rate of ideal op-amp is	
U	(A) Zero	(B) Infinite
	(C) None of these	(D) Any of these

ROLL NO. _

Code: AE54/AC54/AT54/AE104 Subject: LINEAR ICs & DIGITAL ELECTRONICS

R gate are	
In half adder circuit P,Q are inputs then carry will be	

PART - A Answer at least TWO questions. Each question carries 16 marks.

Q.2	a. Demonstrate different steps of IC fabrication.	(8)
	b. Design the circuit for Ideal Op-Amp. Explain its open-loop operation as well with Feedback.	(8)
Q.3	a. Explain V to I and I to V converter using Op-Amp.	(8)
	b. Demonstrate Op-Amp as Integrator with its frequency response curve.	(8)
Q.4	a. Design the Operational Amplifier Circuit and demonstrate all the AC, DC characteristics of Op-Amp circuit.	(8)
	b. Design the Op-Amp as Comparator Circuit and show the mathematical expression and demonstrate the output responses.	(8)
Q.5	a. Demonstrate 555 timer in monostable mode and explain its operations.	(8)
	b. Explain any one technique for A/D conversion.	(8)

PART - B Answer at least TWO questions. Each question carries 16 marks.

Q.6	a.	What is the difference between Parallel and Serial Transmission of data? Explain.	(6)
	b.	Draw and demonstrate all basic gates using universal gates.	(10)

Code: AE54/AC54/AT54/AE104 Subject: LINEAR ICs & DIGITAL ELECTRONICS

Q.7	a. Design Full adder circuit using Universal Gates and show the algebraic	
	expression.	(8)
	b. Design BCD adder circuit and show the algebraic expression	(8)
Q.8	a. Design modulo 13 counters.	(8)
	b. Design SIPO, PISO Shift registers and explain entire function	(8)
Q.9	a. Define the De Morgan's Theorem with suitable examples.	(8)
	b. Find the minimal-cost circuit for the function $f(x1 x4) = \sum m(0,4,5,12,13,15)$ Assume that the input variables are available in un-complemented form of	(8) nlv.