ROLL NO.

Code: AC68/AC120 Subject: FINITE AUTOMATA & FORMULA LANGUAGES

AMIETE – CS (Current & New Scheme)

Time: 3 Hours

June 2019

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. Which is true for δ (q,ab):	
(A) $\delta(q,a) \cup \delta(q,b)$	(B) δ(δ(q,a),b)
(C) δ((q,a),b)	(D) $\delta(q,a) \cap \delta(q,b)$

b. The minimal form of $(R^*)^*$ is =	
(A) R*	(B) R* + R*
(C) R^+ + null	(D) All of these

c. The regular expression for set of all strings of {a, b} that contain string ending is b and does not contain substring aa is given by
(A) (ba + ab)*b
(B) (ab + bb)*b
(C) (b + ab)⁺ b
(D) None of these

- d. When we convert a Finite Automata to CFG we get
 (A) CFG
 (B) CSG
 (C) Regular Grammar
 (D) Unrestricted Grammar
- e. The intersection of a context free-language and a regular language is
 (A) Context free
 (B) Regular but not context free
 (C) Neither context free nor regular
 (D) Both regular and context free
- f. Which of the following is not possible algorithmically?
 (A) RE to CFG
 (B) NFA to DFA
 (C) CFG to PDA
 (D) NPDA to DPDA
- g. Complement of a recursive language is
 (A) Recursive
 (B) Context Sensitive
 (C) Recursive enumerable
 (D) Regular

1

ROLL NO.

Subject: FINITE AUTOMATA & FORMULA LANGUAGES Code: AC68/AC120

	 h. A regular grammar is (A) CFG (C) Unrestricted 	(B) CSG (D) All of these	
	 i. In a standard TM, δ (q ,a), q € (A) defined for all (q,a) € Q × 1 (B) defined for some, not neces (C) defined for no element (q , (D) a set of triples with more the 	Q, a € Γ is f ssarily for all (q,a) € Q × Γ a) of Q × Γ nan one element	
	 j. (a + a*)* is equivalent to (A) a(a*)* (C) aa* 	(B) a*(D) None of these	
	Answer any FIVE Ques Each questio	tions out of EIGHT Questions. on carries 16 marks.	
Q.2	a. Explain principle of strong mangement $n \ge 2$, number n is either a principle of strong mangement $n \ge 2$, number n is either a principle of the strong management $n \ge 2$, number n is either a principle of the strong management $n \ge 2$, number n is either a principle of the strong management $n \ge 2$, number n is either a principle of the strong mangement $n \ge 2$, number n is either a principle of the strong mangement $n \ge 2$, number n is either a principle of the strong mangement $n \ge 2$, number n is either a principle of the strong mangement $n \ge 2$, number n is either a principle of the strong mangement $n \ge 2$, number n is either a principle of the strong mangement $n \ge 2$, number n is either a principle of the strong mangement $n \ge 2$, number n is either a principle of the strong mangement $n \ge 2$, number n is either a principle of the strong mangement $n \ge 2$, number n is either a principle of the strong mangement $n \ge 2$, number n is either a principle of the strong mangement $n \ge 2$, number n is either a principle of the strong mangement $n \ge 2$, number n is either a principle of the strong mangement $n \ge 2$, number n is either a principle of the strong mangement $n \ge 2$, number n is either a principle of the strong mangement $n \ge 2$.	thematical induction and use it to prove for e ne or a product of two or primes.	(3+5)
	b. Define automaton, give its mod	lel and explain characteristics of automaton.	(8)
Q.3	a. State and formally, prove equations to be a state and using mathematical	ivalence of NDFA and DFA by defining all induction.	five (8)
	 b. Design Deterministic finite aut (i) The string containing even r (ii) The string ending in 1 and a (iii) The language of all strings (iv) The language of all strings 	omata for the following over subsets of $\{0,1\}$ number of zeros and odd number of ones. does not contain the substring 00. containing exactly two zeros. does not end with 01.	*: (2×4)
Q.4	 a. Give regular expression for ea (i) The language of all strings i (ii) The language of all strings 11. 	ch of the following over {0,1}: n which number of 0's are even. in which every zero is immediately followe	(2×3) d by

(iii) The set of all strings which has at most two zeros.

- b. Construct the finite automaton equivalent to the regular expression $(0+1)^*(00+11)(0+1)^*$ using following steps. (i) Convert the given regular expression to NFA (ii) Convert the NFA obtained from step (i) to DFA. (iii) Minimize the DFA obtained from step (ii). (3+4+3)
- Q.5 a. State and prove Pumping Lemma for regular languages. Check whether the language $L = {xx | x \in {a,b}}^*$ is regular or not? (4+4)
 - b. Prove any regular language can be accepted by a finite automaton. (8)

Code: AC68/AC120 Subject: FINITE AUTOMATA & FORMULA LANGUAGES

Q.6	a. Give CFG for L ={x \in {0,1}* $n_0(x) \neq n_1(x)$ } and check for the ambiguity for the Grammar S \rightarrow SS a b (4	 +4)
	b. Define DPDA & give DPDA without null for the L = {w $\in (0,1)^*$ $n_0(w) > n_1(w)$ }. (3)	3+5)
Q.7	a. Convert the following grammar to CNF: S \rightarrow AACD A \rightarrow aAb Λ C \rightarrow aC a D \rightarrow aDa bDb Λ	(8)
	b. State & prove pumping lemma for CFG and check whether $L=\{a^i b^i c^i i \geq 1\}$ is context free or not.	(8)
Q.8	a. Design a Turing Machine accepting language $L = \{xx \mid x \in \{0,1\}^* \}$.	(8)
	b. Design a Turing Machine that creates a copy of input string to the right of the input over input alphabet [a,b]*.	(8)
Q.9	a. Prove if L_1 and L_2 are recursive enumerable languages over \sum then $L_1 \cup L_2$ and $L_1 \cap L_2$ are also recursively enumerable.	(8)
	b. Explain PCP and MPCP problems and prove that PCP is unsolvable.	(8)