ROLL NO.

Code: AC65/AC116

Subject: DISCRETE STRUCTURES

AMIETE – CS (Current & New Scheme)

Time: 3 Hours	June 2019	Max. Marks: 100				
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER. NOTE: There are 9 Questions in all.						
 Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else. The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination. 						
 Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks. Any required data not explicitly given, may be suitably assumed and stated. 						
Q.1 Choose the correct or the best alternative in the following: (2×10) a. $A - (A - B)_{is}$						
(A) Equal to ^A (C) Equal to ^B	(B) Equal to $A \cup B$ (D) Equal to $A \cap B$					
b. The truth value of $(P \rightarrow Q) \rightarrow R$ is F if P, Q and R have truth values						
$(\mathbf{A}) \stackrel{F_s T_s T}{(\mathbf{C})} \stackrel{T_s T_s F}{(\mathbf{C})}$						
c. If $P(x, y)$ is $3y + 2 < x$ and R is the universe of discourse, then the truth value of $\exists x \forall y P(x, y)$ and $\forall x \exists y P(x, y)$ are						
(A) T and T (C) F and T	(B) T and F (D) F and F					
 d. The value of the Fibonacci number Fiois (A) 10 (B) 55 (C) 34 (D) 89 						
	Let $A = \{1,2,3\}$. The number of binary relations on A is equal to					
(A) 2 (C) 256	(B) 8 (D) 512					
 f. The relation ^Rdefined in ^Z by ^{mRn} if ^{mn ≥ 0} is (A) Reflexive, symmetric and transitive (B) Not reflexive, symmetric and transitive (C) Reflexive, symmetric but not transitive (D) Reflexive, transitive but not symmetric 						
g. If <i>f</i> is function (A) 7 (C) 5	from Z to Z defined by $f(n) = n + 2$, the (B) 6 (D) 4	n f⁻³(10) is				

1

ROLL NO.

Code: AC65/AC116

Subject: DISCRETE STRUCTURES

	h. If H is the only coset of H in G , then one of the following statements is not true:				
		$(\mathbf{A}) \mathbf{G} = \mathbf{H}$	(B) H is normal in G		
		$(\mathbf{C}) \ [G:H] = 1$	(D) $^{\boldsymbol{G}}$ is abelian		
	i. $R = \{0, \pm 4, \pm 8,\}$ under usual addition and multiplication is				
		(A) Not a ring	(B)A commutative ring		
		(C) Acommutative ring with identity	(D) A field		
	j. The number of relations from $A_{\text{to}} B_{\text{with}} A = m_{\text{and}} B = n_{\text{is}}$				
		(A) ^{mn}	(B) 2^n		
		(C) 2^{m}	$(\mathbf{D})^{2^{mn}}$		
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.					
Q.2	ä	•	y three sets $A, B, C, A\Delta(B\Delta C) = (A\Delta B)\Delta C_{.(8)}$		

- b. Three students $X_{s}Y_{s}Z$ write an examination. Their chances of passing are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ respectively. Find the probability that (i) all of them pass, (ii) at least one of them passes, and (iii) at least two of them pass. (8)
- Q.3 a. Express the following propositions in terms of only NAND and only NOR connectives.
 (i) Tp (ii) p∧q (iii) p∨q (iv) p → q
 - b. Simplify the switching network represented by $u \equiv [p \lor q \lor r] \land [p \lor t \lor \neg q] \land [p \lor \neg t \lor r]$

Q.4 a. Consider the following open statements with the set of all real numbers as the universe.
 p(x):x ≥ 0, q(x):x² ≥ 0, r(x):x² - 3x - 4 = 0, s(x):x² - 3 > 0
 Determine the truthness or falsity of the following statements.
 (i)∃x,p(x)∧q(x) (ii)∀x,p(x) → q(x)(iii)∀x,q(x) → s(x)(iv)∀x,r(x)∨s(x)

(5)

(8)

b. Let
$$m$$
 and n be integers. Prove that $n^2 = m^2$ if and only if $m = n$ or $m = -n$. (8)

Q.5 a. Prove, by mathematical induction, that

$$1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{1}{3}n(2n-1)(2n+1)$$
 for all integers $n \ge 1$. (6)

b. If
$$A = \{1, 2, 3\}, B = \{2, 3, 4\}, C = \{3, 4, 5\}$$
 verify that
 $A \times (B \cup C) = (A \times B) \cup (A \times C)$ and $A \times (B \cap C) = (A \times B) \cap (A \times C)$. (5)

c. If $R = \{x, y/x > y\}$ is a relation on the set $A = \{1, 2, 3, 4\}$. Write down the matrix and the digraph of R.

2

Code: AC65/AC116

 ROLL NO.

 Subject: DISCRETE STRUCTURES

Q.6	a. Consider the poset $(\mathcal{D}(S), \subseteq)$, where $S = \{1,2,3,4\}$. Draw the Hasse diagram of the poset and find all maximal and all minimal elements. Determine the LUB and GLB of $B = \{\{1\}, \{1,2\}, \{1,3\}, \{1,2,3\}\}$.	(8)
	b. Verify that $R = \{(1,1), (2,2), (3,3), (4,4), (1,2,(2,1))\}$ is an equivalence relation on the set $A = \{1,2,3,4\}$. Find the corresponding partition of A .	(8)
Q.7	a. Let f, g, h be function from R to R defined by $f(x) = x^2, g(x) = x + 5$ and $h(x) = \sqrt{x^2 + 2}$. Verify that $(h \circ g) \circ f = h \circ (g \circ f)$.	(8)
	b. Let $A = B = R$ and $D = \{x, y/y = x^2\}$. Prove that $\pi_A(D)$ is one-to-one and on whereas $\pi_B(D)$ is neither one-to-one nor onto.	to (8)
Q.8	a. If \circ is an operation on \mathbb{Z} defined by $x \circ y = x + y + 1$. Prove that (Z, \circ) is an ab group.	elian (8)
	b. In the group $(U_{16},*)$, find all x other than 1 and 15 for which $x = x^{-1}$.	(8)
Q.9	a. Prove that the set Z with binary operations \bigoplus and \bigcirc defined by $x \bigoplus y = x + y - 1, x \bigcirc y = x + y - xy$ is a commutative ring with unity.	(8)
	b. An encoding function $E: \mathbb{Z}_2^2 \to \mathbb{Z}_2^5$ is given by the generator matrix $G = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$. Determine all the code words. Find the associated parity-check matrix H . Use H to decode the received words: 11101,11011	(8)