ROLL	NO	
NULL	NU.	

Code: AC64/AT64/ AC115/AT115 Subject: DESIGN & ANALYSIS OF ALGORITHMS

AMIETE – CS/IT (Current & New Scheme)

Time	: 3 Hours	June 201	9	Max. Marks: 100	
IMM NOT • Qu th • Th th • Ou qu	EDIATELY AFTER RI E: There are 9 Question testion 1 is compulsory the space provided for it the answer sheet for the the commencement of the the of the remaining the tor remaining	ECEIVING THE QUES ns in all. y and carries 20 marks. in the answer book sup Q.1 will be collected by the examination. EIGHT Questions and	TION PAP Answer to oplied and a the invigil swer any	o Q.1 must be written in nowhere else. lator after 45 minutes of FIVE Questions. Each	
Q.1	a. A data structure whe the middle	or the best alternative in ere elements can be adde		ving: (2×10) ed at either end but not in	
	(A) Linked Lists(C) Queues		B) StacksD) Dequeue		
	 b. What is the worst ca (A) O(nlogn) (C) O(log n) 	· ·	on sort? 3) O(n) 3) O(n^2)		
	c. Which of the following is correct recurrence for worst case of Binary Search?				
	(A) $T(n) = 2T(n/2) + O(1)$ and $T(1) = T(0) = O(1)$				
	(B) $T(n) = T(n-1) + O(1)$ and $T(1) = T(0) = O(1)$				
	(C) $T(n) = T(n/2) +$	+ $O(1)$ and $T(1) = T(0) =$	O(1)		
	(D) $T(n) = T(n-2) +$	+ $O(1)$ and $T(1) = T(0) =$	O(1)		
		should be preferred so that ral?			
	e. A priority queue is i level-order traversa	implemented as a Max-H l of the heap is: 10, 8, 5, ap in that order. The leve nents is:	leap. Initiall 3, 2. Two n	ly, it has 5 elements. The ew elements 1 and 7 are ersal of the heap after the	

(D) 10,8,7,5,3,2,1

(C) 10,8,7,1,2,3,5

2

Code: AC64/AT64/ AC115/AT115 Subject: DESIGN & ANALYSIS OF ALGORITHMS

 f. In an unweighted, undirected connected graph, the shortest path from a node S to every other node is computed most efficiently, in terms of time complexity by (A) Dijkstra's algorithm starting from S (B) Warshall's algorithm (C) Performing a DFS starting from S (D) Performing a BFS starting from S 					
g. The order of an internal node in a B+ tree index is the maximum number of children it can have. Suppose that a child pointer takes 6 bytes, the search field value takes 14 bytes, and the block size is 512 bytes. What is the order of the internal node?					
(A) 24 (C) 26 (B) 25 (D) 27					
 h. Given the following input (4322, 1334, 1471, 9679, 1989, 6171, 6173, 4199) and the hash function x mod 10, which of the following statements are true? (i) 9679, 1989, 4199 hash to the same value (ii) 1471, 6171 has to the same value (iii) All elements hash to the same value (iv) Each element hashes to a different value (A) (i) only (B) (ii) only (C) (i) and (ii) only (D) (iii) or (iv) i. Let X be a problem that belongs to the class NP. Then which one of the following is TRUE? (A) There is no polynomial time algorithm for X. (B) If X can be solved deterministically in polynomial time, then P = NP (C) If X is NP-hard, then it is NP-complete (D) X may be undecidable 					
j. Which of the following is not a backtracking algorithm?					
(A) Knight tour problem(B) N queen problem(C) Tower of Hanoi(D) M coloring problem					
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.					
Q.2 a. Briefly discuss the important problem types.	(8)				
b. Discuss various steps in algorithmic problem solving technique.	(8)				
Q.3 a. How to analyze the time efficiency of non-recursive algorithms? Explain with examples. (1	.0)				
-	6)				

ROLL NO. _

Code: AC64/AT64/ AC115/AT115 Subject: DESIGN & ANALYSIS OF ALGORITHMS

Q.4	Explain the quick sort algorithm with example.	(16)
Q.5	Explain topological sorting in detail.	(16)
Q.6	Define heap. Explain the properties of heap and write a simple example to explain heap sort algorithm.	n (16)
Q.7	Explain kruskal's algorithm for finding minimum spanning tree with an example.	(16)
Q.8	Describe various hashing techniques. Give examples.	(16)
Q.9	Discuss branch and bound method with a suitable example.	(16)