ROLL NO.

Code: AC111/AT111

Subject: Computer Graphics & Visualization

AMIETE – CS/IT (New Scheme)

Time: 3 Hours

June 2019

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or the best alternative in the following: (2×10) 0.1 a. Types of computer graphics are (A) Vector and raster **(B)** Scalar and raster (C) Vector and scalar (**D**) None of these b. GUI stands for (A) Graphics user interaction (B) Graphical user interface (C) Graphics usual interface (**D**) None of these c. The visual language includes _____ _ for representing visual sentences. (A) Visual languages (B) Icons (**D**) None of these (C) Both (A) & (B) d. Expansion of line DDA algorithm is (A) Digital difference analyzer (**B**) Direct differential analyzer (C) Digital differential analyzer (**D**) Data differential analyzer e. In Bresenham's line algorithm, if the distances d1 < d2 then decision parameter Pk is (A) Positive (B) Equal (D) Either (A) or (C) (C) Negative f. Coordinate references in the polyline function are stated as (A) Relative coordinate values (**B**) Absolute coordinate values (C) Current position (**D**) Real coordinate values g. The basic parameter to curved attributes are (A) Type (**B**) Width (C) Color (D) All of these

ROLL NO.

Code: AC111/AT111 Subject: Computer Graphics & Visualization

 h. Color information can be stored in (A) Main memory (C) Graphics card 	(B) Secondary memory(D) Frame buffer
 i. The process of filling an area with (A) Tiling (C) Tint-fill 	 rectangular pattern is called (B) Linear fill (D) Soft-fill
 j. During 2-D rotation, clockwise dir (A) +ve (C) +ve or -ve 	ection means Q is (B) -ve (D) None of these

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	List some applications for large-screen displays.	(4)
	b.	List the operating characteristics for the following display technologies: raster refresh systems, vector refresh systems, plasma panels, and LCDs.	(12)
Q.3	a.	Write Bresenham's line algorithm procedure and write code to draw line between end points (20, 10) and (30, 18)	(10)
	b.	Write the procedure for Midpoint circle algorithm	(6)
Q.4	a.	Write notes on OPENGL line and curve functions	(8)
	b.	Write a procedure to determine whether a given point is inside or outside of a cube with a given set of coordinates.	(8)
Q.5	a.	Show that the composition of two rotations is additive by concatenating the matrix representations for $R(\theta 1)$ and $R(\theta 2)$ to obtain $R(\theta 1) \cdot R(\theta 2) = R(\theta 1 + \theta 2)$	(8)
	b.	Write OpenGL routine that moves the n vertices of a polygon from one world coordinate position to another, and regenerates the translated polygon.	(8)
Q.6	a.	Write a complete program to implement the Liang-Barsky line-clipping algorithm	(10)
	b.	Compare the number of arithmetic operations performed in the Cohen- Sutherland and the Liang-Barsky line-clipping algorithms for several different line orientations relative to a clipping window.	(6)
Q.7	a.	Explain in detail depth-buffer method for detecting visible surfaces	(10)
	b.	Illustrate diffuse reflection in detail.	(6)

Code: AC111/AT111 Subject: Computer Graphics & Visualization

Q.8	a. Discuss about Constant-Intensity Surface Rendering and Phong Surface Rendering	(8)
	b. List various interactive picture construction techniques. Explain any two of them in detail.	(8)
Q.9	a. Write short note on Computer-animation languages.	(6)
	b. List and explain the development stages of animation sequences.	(6)
	c. Write a note on modeling packages.	(4)