ROLL NO. \_\_\_\_

**Code: AC104/AT104** 

Subject: DATA STRUCTURES WITH C & C++

# AMIETE – CS/IT (New Scheme)

Time: 3 Hours

# June 2019

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

## Q.1 Choose the correct or the best alternative in the following:

(2×10)

a. Consider the following definition in C programming language

```
struct node
{
    int data;
    struct node * next;
}
typedef struct node NODE;
NODE *ptr;
Which of the following C code is used to create new code?
(A) ptr = (NODE*)malloc(sizeof(NODE));
(B) ptr = (NODE*)malloc(NODE);
(C) ptr = (NODE*)malloc(sizeof(NODE*));
(D) ptr = (NODE)malloc(sizeof(NODE));
```

b. What does the following function do for a given Linked List with first node as head?

```
if(head == NULL)
return;
fun1(head->next);
printf("%d ", head->data);
```

- (A) Prints all nodes of linked lists
- (B) Prints all nodes of linked list in reverse order
- (C) Prints alternate nodes of Linked List
- (D) Prints alternate nodes in reverse order

ł

}

ROLL NO. \_

#### Code: AC104/AT104

### Subject: DATA STRUCTURES WITH C & C++

(D) Depends on compiler

- c. 'ptrdata' is a pointer to a data type. The expression \*ptrdata++ is evaluated as (in C++):
  (A) \*(ptrdata++)
  (B) (\*ptrdata)++
  - (C) \*(ptrdata)++
- d. The following numbers are inserted into an empty binary search tree in the given order:

| 10, 1, 3, 5, 15, 12, 16          |                |
|----------------------------------|----------------|
| What is the height of the binary | v search tree? |
| (A) 5                            | <b>(B)</b> 6   |
| ( <b>C</b> ) 3                   | <b>(D)</b> 4   |

- e. Level order Traversal of a rooted Tree can be done by starting from root and performing
  (A) Breadth First Search
  (B) Depth First Search
  (D) Deep Search
- f. A list of n strings, each of length n, is sorted into lexicographic order using merge-sort algorithm. The worst case running time of this computation is
  (A) O(n<sup>3</sup>)
  (B) O(nlogn)
  (C) O(n<sup>2</sup>+logn)
  (D) O(n<sup>2</sup>logn)
- g. What is the return value of f(p,p), if the value of p is initialized to 5 before the call? Note that the first parameter is passed by reference, whereas the second parameter is passed by value.

| <b>(B)</b> 6561   |
|-------------------|
| <b>(D)</b> 161051 |
|                   |

h. A Hash Function f is defined as f(key) = key mod 7. With linear probing as storage and collision resolution mechanism while inserting the keys 37, 38, 72, 48, 98, 11, 56 into a table indexed from 0, in which location the key 11 will be stored (Count table index 0 as 0<sup>th</sup> location)?
(A) 3

i. The given array is arr = {3,4,5,2,1}. The number of iterations in bubble sort and selection sort respectively are
 (A) 2 and 5
 (B) 2 and 4

| $(\mathbf{II}) \mathbf{Z}$ und $\mathbf{S}$ | $(\mathbf{D}) \mathbf{Z}$ and $\mathbf{T}$ |
|---------------------------------------------|--------------------------------------------|
| ( <b>C</b> ) 4 and 5                        | <b>(D)</b> 4 and 4                         |

ROLL NO. \_\_

## Code: AC104/AT104

Subject: DATA STRUCTURES WITH C & C++

j. Which of the following is non-linear data structure?

(A) Stack (C) Tree (**B**) Queue

(**D**) Records

### Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

| Q.2 | a. | Explain the use of pointers in passing an Array to a function. Explain with example.                                  | (8)  |
|-----|----|-----------------------------------------------------------------------------------------------------------------------|------|
|     | b. | What is recursion? Write a program to find a term in Fibonacci series using recursion.                                | (8)  |
| Q.3 | a. | Describe the Linked implementation of Stacks.                                                                         | (10) |
|     | b. | Convert the following infix expression into postfix form.<br>(i) A^B*C-D+E/F/(G+H)<br>(ii) (A+B) *(C^(D-E) + F)-G     | (6)  |
| Q.4 | a. | What is Singly (Linear) Linked List? Write an algorithm to count the number of nodes in a given singly linked list.   | (8)  |
|     | b. | Write algorithms to insert into and delete elements from a doubly linked list.                                        | (8)  |
| Q.5 | a. | Write cases for deletion of a node from a binary search tree.                                                         | (4)  |
|     | b. | Construct AVL search tree by inserting the following elements in order of their occurrence 68,5,38,24,18,116,92,82,48 | (6)  |
|     | c. | Write a Program to count the number of leaf nodes in a binary tree.                                                   | (6)  |
| Q.6 | a. | Consider the graph G= (V, E) given below.                                                                             | (12) |



Find minimum spanning tree using Prim's algorithm.

3

(4)

b. Obtain the adjacency-matrix, adjacency list representation of the following graph



| Q.7 | a. | Given input (4371,1323,6173,4111,4299,9669,1989) and a hash function h(X)=X mod 10. Show the result of open addressing hash table using linear probing. | (8) |
|-----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | b. | Write Binary Search Algorithm and explain its working.                                                                                                  | (8) |
| Q.8 | a. | Write the complete Quick-sort algorithm including any algorithm it uses.<br>Analyze its runtime.                                                        | (8) |
|     | b. | Show how Insertion Sort processes the input 142,543,123,65,453,879,572,434,111,242,811,102,125 and146                                                   | (8) |
| Q.9 | a. | How are files organized on the disk? Explain with suitable diagram and example.                                                                         | (8) |
|     | b. | Write a program to create a file; read and display the contents of the file.                                                                            | (8) |

4