ROLL NO. \_\_

**Code: AC103/AT103** 

Subject: ANALOG & DIGITAL ELECTRONICS

# AMIETE – CS/IT {NEW SCHEME}

Time: 3 Hours

# June 2019

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions, selecting at least TWO questions from each part, each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

### Q.1 Choose the correct or the best alternative in the following:

 $(2 \times 10)$ 

| a.  | The open loop gain of an amplifier is 200. If negative feedback with $\beta$ =0.2 i used, the closed loop gain will be |                                                                       |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
|     | (A) 200                                                                                                                | <b>(B)</b> 40.12                                                      |  |  |
|     | (C) 4.878                                                                                                              | <b>(D)</b> 2.2                                                        |  |  |
| b.  | . The theoretical maximum efficiency of a half wave diode rectifier is                                                 |                                                                       |  |  |
|     | <b>(A)</b> 40.6%                                                                                                       | ( <b>B</b> ) 50%                                                      |  |  |
|     | (C) 81.2%                                                                                                              | ( <b>D</b> ) slightly less than 100%                                  |  |  |
| c.  | c. In CE amplifier circuit, voltage gain is directly proportional to                                                   |                                                                       |  |  |
|     | ( <b>A</b> ) β                                                                                                         | (B) collector supply voltage                                          |  |  |
|     | (C) base resistance                                                                                                    | ( <b>D</b> ) None of these                                            |  |  |
|     |                                                                                                                        |                                                                       |  |  |
| d.  | A Colpitt's oscillator uses                                                                                            |                                                                       |  |  |
|     | (A) a tapped inductor                                                                                                  | (B) an inductor & two capacitors                                      |  |  |
|     | $(\mathbf{C})$ Both $(\mathbf{A})$ and $(\mathbf{B})$                                                                  | (D) Either (A) or (B)                                                 |  |  |
| e   | e If the midband gain of an amplifier is $40  dB$ the gain at half power freque                                        |                                                                       |  |  |
| ••• | (A) 37 dB                                                                                                              | ( <b>B</b> ) 30 dB                                                    |  |  |
|     | (C) 20 dB                                                                                                              | (D) 13dB                                                              |  |  |
|     | (0) 20 02                                                                                                              | (2) 1002                                                              |  |  |
| f.  | In a 4 input AND gate, the total num                                                                                   | ut AND gate, the total number of high outputs for 16 input states are |  |  |
|     | (A) 16                                                                                                                 | ( <b>B</b> ) 8                                                        |  |  |
|     | ( <b>C</b> ) 4                                                                                                         | <b>(D)</b> 1                                                          |  |  |
| g.  | In a four variable k-map, 8 adjacent cells give a                                                                      |                                                                       |  |  |
| U   | (A) 2 variable term                                                                                                    | ( <b>B</b> ) single variable term                                     |  |  |
|     | (C) 3 variable term                                                                                                    | ( <b>D</b> ) 4 variable term                                          |  |  |

1

ROLL NO.

| Code: AC103/AT103                                | Subject: ANALOG & DIGITAL ELECTRONICS                    |
|--------------------------------------------------|----------------------------------------------------------|
| h. Parallel adder is                             |                                                          |
| (A) sequential circuit                           | (B) combinational circuit                                |
| ( <b>C</b> ) Either ( <b>A</b> ) or ( <b>B</b> ) | <b>(D)</b> None of these                                 |
| i. A 4:1 MUX requires                            | data select line.                                        |
| ( <b>A</b> ) 1                                   | <b>(B)</b> 2                                             |
| (C) 3                                            | <b>(D)</b> 4                                             |
| j. In a positive edge trig                       | gered JK FF J=1, K=0 and clock pulse is rising Q will be |
| ( <b>A</b> ) 0                                   | <b>(B)</b> 1                                             |
| (C) No change                                    | ( <b>D</b> ) Toggle                                      |
|                                                  |                                                          |

#### PART A Answer at least TWO questions. Each question carries 16 marks.

- **Q.2** a. Draw the dc equivalent circuit for a diode and the piecewise linear equivalent circuit. Discuss the application of each.
  - b. In the below given circuit the zener diode is non-ideal, having a knee voltage  $V_{Z0}=9V$  and a dynamic resistance  $r_Z = 5\Omega$ . If the supply voltage  $V_S$  varies from 15 to 30 V, determine the range of variation of the output voltage  $V_0$ , also comment on the result. (8)



- Q.3 a. Draw the circuit diagram of a basic clamper circuit and explain the operation briefly along with suitable waveforms.
  - b. The voltage waveform V<sub>i</sub> of Figure (a) is applied to the input of the circuit of Figure (b), Show the output V<sub>0</sub> waveform and mark the voltage levels. Find the PIV of the diode, assumed to be ideal.



Q.4 a. Explain BJT common-emitter configuration and draw a circuit for determining common-emitter characteristics.
(8)

(8)

(8)

### Code: AC103/AT103 Subject: ANALOG & DIGITAL ELECTRONICS

b. In the circuit of figure shown below  $\beta = 99$  and  $V_{BE} = 0.7$  V. Calculate the quiescent values of  $I_B$ ,  $I_C$ ,  $I_E \& V_{CE}$ .



- Q.5 a. For a voltage series feedback amplifier, find expression for input and output resistance.
  - b. Sketch the circuit diagram of Hartley oscillator and explain its working in detail.(8)

| PART - B<br>Answer at least TWO questions. Each question carries 16 marks. |    |                                                                                                                                                                 |     |
|----------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Q.6                                                                        | a. | Find the 11's complement of following numbers:<br>(i) $(935)_{12}$ (ii) $(267)_{12}$                                                                            |     |
|                                                                            | b. | X and Y are successive digits in positional number system and $(XY)_r = (25)_{10}$ and $(YX)_r = (31)_{10}$ . Determine the value of X, Y and r.                | (4) |
|                                                                            | c. | Why the Gray code is also known as reflected code? Write a brief note on Gray code and its applications.                                                        | (8) |
| Q.7                                                                        | a. | Minimize the following boolean function using K-Map:<br>$F(A,B,C,D) = \sum m(0,1,2,8,10,11,14,15) \bullet d(9,12)$                                              | (8) |
|                                                                            | b. | Write a boolean expression for the following state:<br>"Z is TRUE if either X or Y is FALSE, otherwise Z is FALSE." Write a truth<br>table for this expression. | (8) |
| Q.8                                                                        | a. | How many 3:8 line decoder with enable input are required to construct 6:64 line decoder without using any other logic? Draw its block diagram also.             | (8) |
|                                                                            | b. | Implement a full subtractor using two 4:1 Multiplexer.                                                                                                          | (8) |
| Q.9                                                                        | a. | Explain the procedure for conversion of RS Flip Flop to JK Flip Flop.                                                                                           | (5) |
|                                                                            | b. | What is race around condition? How it can be avoided?                                                                                                           | (5) |
|                                                                            | c. | Design a binary counter with following binary sequence using D flip flop: 0, 1, 3, 2, 6, 4, 5, 7 & repeat                                                       | (6) |

(8)