ROLL NO.

Code: DE65

Subject: CONTROL ENGINEERING

DiplETE – ET (Current Scheme)

Time: 3 Hours

a.

June 2018

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

The inverse Laplace transform of $\frac{5}{r^2+2}$ is

		3 1 2	
(A)	$\frac{5}{2}e^{-5t}$	(B)	$\frac{5}{2}e^{-2t}$
(C)	$\frac{5}{2}\cos 2t$	(D)	$\frac{5}{\sqrt{2}}\sin\sqrt{2}t$

b.	A system can be completely described by	a transfer function, if it is
	(A) nonlinear and continuous	(B) Linear and time –invariant
	(C) linear and time varying	(D) Nonlinear and time –invariant

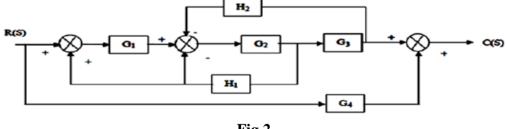
- c. The Gain and Phase margins of G(s) for closed loop stability are (A) 6dB and 90⁰
 (B) 3dB and 180⁰
 (C) 3dB and 90⁰
 (D) 6dB and 180⁰
- d. The initial slope of the Bode plot for a transfer function having double zero at origin is

(A) -20 dB/decade	(B) 20 dB/decade
(C) -40 dB/decade	(D) 40 dB/decade

- e. The electrical capacitance is analogous to
 (A) Spring
 (B) Mass
 (C) Viscous damper
 (D) None of these
- f. Laplace transform of a unity step function is (A) 1/s (B) s (C) $1/s^2$ (D) 1
- g. The damping ratio of a system having the characteristic equation s²+2s+8=0 is
 (A) 0.330
 (B) 0.230
 (C) 0.353
 (D) 0.253

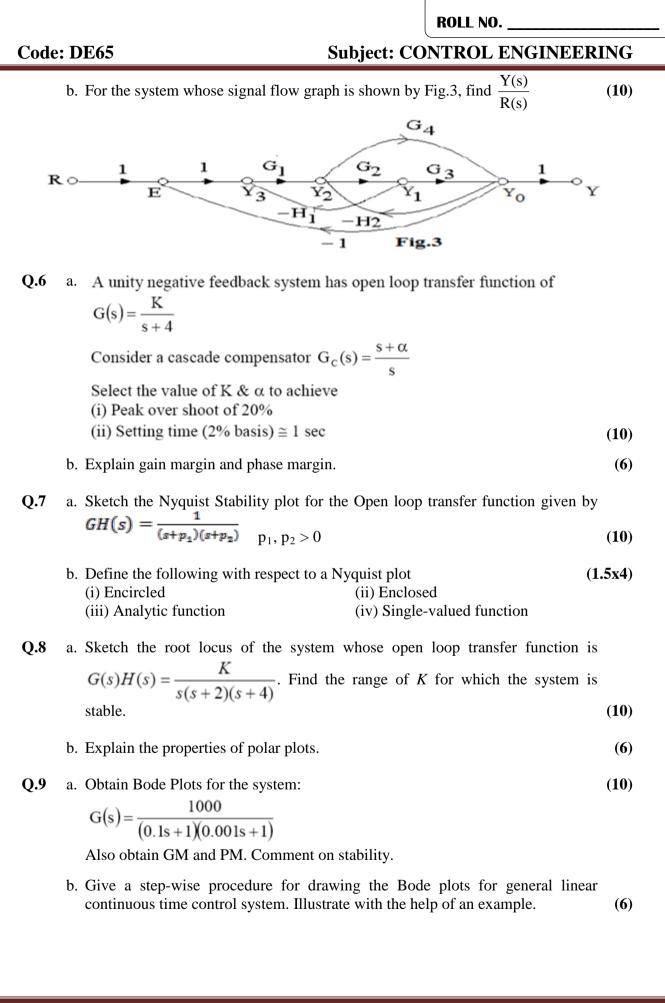
ROLL NO.

Code: DE65


Subject: CONTROL ENGINEERING

h.	For a standard second-order system $1/\zeta \omega_n$ indicates	em described by $s^2 + 2\zeta \omega_n s$	$s + \omega_n^2$, the term
	(A) damping factor	(B) time constant	
	(C) natural frequency	(D) None of these	
i.	Laplace transform of integral of f (A) F(s)	f(t) is (B) $sF(s) - f(0)$ (D) $s^2F(s)$	
	$(\mathbf{C}) \mathbf{sF}(\mathbf{s})$	$(\mathbf{D}) \mathbf{s}^{2} \mathbf{F}(\mathbf{s})$	$v_1 \qquad \leq_R v_0$
j.	The transfer function of the network as shown in Fig. 1 is		
-	(A) $1/(1 + sRC)$	(B) $sRC/(1 + sRC)$	↓↓
	(C) $RC/(1 + sRC)$	(D) $(1 + sRC)/(1 - sRC)$	Fig. 1

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.


Q.2	a. Compare open loop & closed loop control systems using suitable example.	(6)
	 b. Differentiate the following: (i) Continuous & discrete control systems (ii) Analog & Digital control systems 	(6)
	c. Discuss the computer controlled systems with the help of its block diagram.	(4)
Q.3	a. Explain the meaning of steady state responses and transient response.	(2×4)
	b. Obtain the Solution of the differential equation given below $\frac{d^2 x}{dt^2} + 2\frac{dx}{dt} + 2x = 0$ Given $x(0+) = 0$ and $x'(0+) = 1$	(8)

Q.4 a. Obtain the closed loop transfer function C(s)/R(s) of the system whose block diagram is shown in Fig.2

- b. Define stability. Use continued fraction stability criterion to determine stability of the characteristic equation: $s^4 + 4s^3 + 8s^2 + 16s + 32 = 0$. (8)
- Q.5 a. Explain the following rules of signal flow graph: (i) Addition rule (ii) Transmission rule (iii) Multiplication rule (2x3)

