DiplETE - ET/CS (Current & New Scheme)

Time: 3 Hours

June 2018

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE OUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.

Q.1	Choose the correct or the best alter	rnative in the following:	(2×10)
	a. Which among the following is not(A) Hard disk(C) Floppy disk	t a secondary memory storage device. (B) RAM (D) Magnetic tape	
	b. The examples of High-level langu(A) BASIC(C) COBOL	ages are (B) FORTRAN (D) All of these	
	c. The range of numbers that can be $ (\mathbf{A}) - (2^{n-1} - 1) \text{ to } + (2^{n-1} - 1) $ $ (\mathbf{C}) - (2^{n-1}) \text{ to } + (2^{n-1} - 1) $	represented for Sign Magnitude notation $(\mathbf{B}) - (2^{n-1} - 1) \text{ to } + (2^{n-1})$ $(\mathbf{D}) - 2^{n-1} \text{ to } + (2^{n-1} - 1)$	
	d. The Instruction MOV r1, r2 occup(A) 2 bytes(C) 1 byte	in memory. (B) 3 bytes (D) 4 bytes	
	e. The Instruction complement in 80(A) CMC(C) CMP	(B) CMA (D) CPL	
	f. Which of the following register is(A) B(C) W	not accessible to the programmer? (B) C (D) D	
	g. The Interrupt pin having the higher(A) TRAP(C) RST 7.5	est priority is (B) INTR (D) RST 6.5	
	h. Which of the following interrupt i(A) TRAP(C) RST 7.5	s non-vectored interrupt? (B) INTR (D) RST 6.5	
	i. INTEL 8255 supports(A) 1	modes of operation. (B) 2	

(D) 4

(C) 3

ROLL NO.	
HULL NU.	

Code: DE60/DC68/DE111/DC111

Subject: MICROPROCESSORS & MICROCONTROLLERS

	 j. INTEL 8279 is a			
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.				
Q.2	 a. Explain the following Data Transfer Group of instructions with examples. (i) MVI (ii) LXI (iii) LDA (iv) XCHG (v) STA 			
	b. Explain the role of Stack and Stack Pointer in 8085.			
Q.3	 a. Explain the purpose of the following registers in 8085. (i) Program Counter (ii) Instruction Register (iii) W & Z registers 			
	b. Draw the architecture of 8085. (6)			
Q.4	a. Write a program for 8085 to exchange 10 bytes of data stored from location X with 10 bytes of data stored from location Y. Also draw the flowchart.			
	b. Write an 8085 ALP to find the smallest 'N' 1-byte numbers. (6)			
Q.5	a. Describe the various methods of Parallel Data Transfer schemes. (10)			
	b. Describe the action taken by 8085 when it gets interrupted. (6)			
Q.6	 a. Draw the Internal Architecture of 8255 and explain how 8255 interfaces with I/O devices. 			
	b. Explain the function of following pins of INTEL 8279. (i) RL ₇₋₀ (ii) SL ₃₋₀ (6)			
Q.7	a. Describe the functions of the registers available in 8259. (8)			
	b. Draw the functional pin diagram of INTEL 8257 and explain the condition when processor is the MASTER and 8257 is in SLAVE mode. (3+5)			
Q.8	a. Describe the Synchronous data transmission and data reception with neat diagram. (5+5)			
	b. Explain the function of TxRdy and TxC* pins of 8251. (6)			
Q.9	a. Describe the Internal Data Memory Organization of 8051. (8)			
	b. Explain the various Addressing modes of 8051 with examples. (8)			