ROLL NO. _____

Code: DE57

Subject: NETWORKS & TRANSMISSION LINES

DiplETE – ET (Current Scheme)

Time: 3 Hours

June 2018

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

- a. Transmission will be distortionless if
 (A) LG = CR
 (B) LG = 1/CR
 (C) LC = GR
 (D) LR = GC
- b. The Laplace transform of $e^{-at}u(t)$ is

(A) $\frac{s}{s+2}$	(B) $\frac{s}{s-2}$
$(C) \frac{1}{1}$	$(\mathbf{D}) \frac{1}{\mathbf{D}}$
s+a	(D) s-a

c. For the symmetrical two-port network $Z_1 = 30\Omega$ and $Z_2 = 10\Omega$, then the values of A and D

(A) A=1/4 D=4	(B) A=4 D=1/4
(C) A=1/4 D=1/4	(D) A=4 D=4

 d. A Series RLC circuit resonates at 3MHz and has a 3dB bandwidth of 10kHz. The Q of the circuit at resonance is
 (A) 300
 (B) 30

(11) 500	(\mathbf{D}) 50
(C) $300\sqrt{2}$	(D) $\frac{300}{\sqrt{2}}$
	2/ /

- e. Which one of the following is a passive element?
 (A) BJT
 (B) FET
 (C) Inductor
 (D) Op-Amp
- f. In a series resonant circuit, the impedance of the circuit at resonance is:

(A) maximum	(B) minimum
(C) infinite	(D) zero

Subject: NETWORKS & TRANSMISSION LINES

g. A circuit has Thevenin's voltage of 10V, Thevenin's resistance of 2Ω and load resistance of 3Ω, then its load voltage is _____.
(A) 3V
(B) 5V

(D) 6V

- (**C**) 10
- h. The filter shown below is:

- i. Calculate half power frequencies f₁ & f₂ of a series resonating circuit where the resonance frequency is 150 kHz and the bandwidth is 75 kHz.
 (A) f₁= 117.5 kHz & f₂ = 127.5 kHz
 (B) f₁ & f₂=10 KHz
 (C) f₁= 180 kHz & f₂ = 120 kHz
 (D) f₁= 117.5 kHz & f₂=192.5 kHz
- j. The h parameters h₁₁ and h₂₁ are obtained
 (A) by shorting output terminals
 (B)
 (C) by shorting input terminals
 (D)
 - (**B**) by opening output terminals
 - **(D)** by opening input terminals

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. A series RLC circuit consists of resistance R=25 Ω, inductance L=0.01H and Capacitance C=0.04 µF. Calculate (2+3+3)
(i) The frequency of resonance
(ii) If a 10V voltage of frequency equal to the frequency of resonance is applied to this circuit, calculate the values of V_L and V_C across L and C.
(iii) Find the frequencies at which these voltages V_L and V_C are maximum

- b. Explain in detail different types of network elements. (8)
- Q.3 a. Find the Initial and Final values for the following: (4+4)

$$X(s) = \frac{s+4}{s^2+3s+5}$$

- b. Discuss the advantages of Laplace Transform method over classical method. (4)
- c. Find the convolution integral when $f_1(t) = e^{-at}u(t)$ and $f_2(t) = t u(t)$, using Laplace transform. (4)

2

Code: DE57

Subject: NETWORKS & TRANSMISSION LINES

Q.4 a. Determine the current through the resistor of 2Ω connected across AB for the network as shown in Fig.1 using Thevenin's theorem. (8)

- b. State and prove Thevenin's theorem.
- Q.5 a. Find out the Z parameters and hence the ABCD parameters of the network shown in Fig.2. Check if the network is symmetrical or reciprocal. (10)

b. Derive the equations for the elements of an m derived T & π sections. (6)

- Q.6 a. Derive the relationship between the resonance frequency f_n and half power frequencies f₁ and f₂ in series resonant circuit.
 (8)
 - b. The primary constants of a line per loop km are $R = 196 \Omega$; $C = 0.09 \mu$ F; L = 7.1mH and leakage conductance is negligible. Calculate the characteristic impedance and the propagation constant at angular frequency of 5000 radians/sec.

Q.7 a. Define Frequency and Delay distortions in a transmission line. Explain the methods to minimize the distortions in a transmission line. (3+5)

- b. Explain primary constants of a transmission line and draw the equivalent circuit of transmission line using these constants. (8)
- Q.8 a. What is stub? Explain the different type of stub matching used in transmission lines. (8)
 - b. Write short notes on the following:(4x2)(i) Quarter wave short circuit line(ii) Half wave open circuited line

Q.9 a. Design a Constant-K Low pass filter to have a cut-off frequency of 2kHz and terminating impedance of 600Ω . Design for both T and π sections. (8)

b. Write short notes on: (4+4)
(i) Constant-K Low-pass filter and its approximation/design
(ii) Symmetrical Lattice attenuator

(8)

(8)