Code: AE74/AE122/AC122

ROLL NO. _

Subject: VLSI DESIGN

AMIETE – ET/CS (Current & New Scheme)

Time: 3 Hours

June 2018

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best altern	native in the following:	(2×10)
	a. Which one has highest power consumption?		
	(A) ECL	(B) CMOS	
	(C) NMOS	(D) GaAs	
	b. Which technology offers lowest delay?		
	(A) Bi-CMOS	(B) CMOS	
	(C) NMOS	(D) GaAs	
	c. What is relative permittivity for silicon dioxide?		
	(A) 8.85	(B) 10	
	(C) 8	(D) 4	
	d. What is the range for MSI?		
	(A) 10	(B) 100-1000	
	(C) 1000-20000	(D) 100000	
	e. The $Z_{P.U.}/Z_{P.D}$ for an inverter driven by an inverter		
	(A) 4	(B) 2	
	(C) 8	(D) 16	
	f. For n inputs in a Wallace tree the adder cell grows like		
	(A) $\log_2(1/n)$	$(\mathbf{B})\log_2(\mathbf{n})$	
	$(\mathbf{C})\log_{10}(\mathbf{n})$	(D) None of these	
	g. Which stick diagram from following Device uses two Polysilicon layers?		
	(A) nMOS	(B) CMOS	
	(C) Both (A) & (B)	(D) BiCMOS	
	h. Which circuits are susceptible to latch up problems?		
	(A) nMOS	(B) pMOS	
	(C) BiCMOS	(D) CMOS	

1

ROLL NO. _

Code: AE74/AE122/AC122

Subject: VLSI DESIGN

- i. Which model is suitable to represent a "stuck-at" fault?
 (A) Mathematical model
 (B) Physical Model
 (D) None of these
- j. RC delay ______ when line width becomes smaller?(A) Increases(B) Decreases(C) No Change(D) Can't Say

Answer any FIVE Questions out of Eight Questions. Each question carries 16 marks.

Q.2	a. What is a BiCMOS technology? Compare BiCMOS and Bipolar technologie	es. (6)
	b. Describe the process for CMOS fabrication using n-well process.	(10)
Q.3	a. Give Aspects of MOS transistor threshold voltage.	(4)
	b. In an nMOS transistor operating at room temperature following measurement are done $V_{GS}=4V V_{SB}=2.6V V_{DS}=4V I_D=144\mu A$ and the process parameter are W/L=1, $t_{ox}=400 \text{\AA}$, $ 2\Phi_F = 0.64 \text{ V \& N_A}=10^{16}/\text{cm}^3$. Find V_{th} , electric mobility and body effect coefficient. Assume oxide charge $Q_{OX}=0$	
	c. Derive the drain current vs voltage characteristics.	(4)
Q.4	a. Draw a symbolic diagram for 1- bit CMOS shift register.	(4)
	b. Explain lambda- based design rules for nMOS, pMOS and CMOS transistor	rs. (8)
	c. Discuss the role of layout in VLSI circuits.	(4)
Q.5	a. What is sheet resistance? Find expression for standard unit of Resistance for MOSFET.	(6)
	b. Explain delay unit. Estimate the rise time and fall time of a CMOS.	(10)
Q.6	a. Discuss Parity generator circuit of a basic one-bit cell using stick diagrams.	(6)
	b. Discuss Pseudo-nMOS, Dynamic, and Clocked CMOS Logics in detail.	(10)
Q.7	a. Explain working of a Carry look ahead adder.	(10)
	b. Using an example implement ALU function with an adder.	(6)
Q.8	a. Discuss the design of a pseudo-static RAM cell.	(6)
	b. Explain all ground rules for a successful design.	(10)
Q.9	a. Discuss how to test a combinational logic.	(8)
	b. Explain the uses of a CIF code.	(8)