ROLL NO. _

Code: AE67/AE118

Subject: DIGITAL COMMUNICATIONS

AMIETE – ET (Current & New Scheme)

Time: 3 Hours

June 2018

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

(2×10)

- a. Binary data is transmitted over a band pass channel at a rate of 300 bits per second using non-coherent FSK signaling Scheme with tone frequency 1070 Hz and 1270 Hz. Assuming $A^2/N_0 = 8000$, The Probability of Error is (A) 634×10^{-2} (B) 63.4×10^{-2} (C) 6.34×10^{-2} (D) 0.634
- b. Granular noise is associated with
 (A) PCM
 (B) DM
 (C) QAM
 (D) DPCM
- c. An Analog signal is sampled at the Nyquist rate and quantized into q levels. The time duration τ of 1-bit of the binary coded signal is
 (A) Ts/q
 (B) Ts/log_{10*}q
 (C) Ts/2q
 (D) Ts/log_{2*}q
- d. According to Shannon's Theory, Error Probability (Pe → 0) can be attained by maintaining
 (A) Pe = C
 (B) Pe ≤ C

$(\mathbf{A}) \mathbf{R}_{\mathbf{b}} = \mathbf{C}$	$(\mathbf{B}) \mathbf{R}_{\mathbf{b}} \leq \mathbf{C}$
$(\mathbf{C}) \mathbf{R}_{\mathrm{b}} \ge \mathbf{C}$	$(D) R_b < C$

e Minimum distance (d_{min}) in BPSK constellation diagram is

(A) $2\sqrt{E_b}$	(B) $\sqrt{\mathrm{E}_{\mathrm{b}}}$
(C) $\sqrt{2E_{b}}$	(D) None of these

f. A Compact disk (CD) records audio signal digitally by PCM.Assume audio signal's bandwidth to be 15KHz. If signals are sampled at a rate of 10% above Nyquist rate for practical reason and the samples are quantized into 65536 levels, the signaling rate is

(A) 528 Kbps
(B) 1056 Kbps
(C) 132 Kbps
(D) 264 Kbps

		ROLL NO)
Cod	e: AE67/AE118 Su	bject: DIGITAL COMMUNICA	ATIONS
	g. A communication channel with AWGN has of 15. The channel capacity is (A) 64 Kbps(B) 1 (C) 128 Kbps(C) 128 Kbps(D)	as a Bandwidth of 4 KHz and an SNR 6 Kbps 32 Kbps	
	h. For a continuous-time signal x(t)= 6cos504 (A) 200 Hz (B) 4 (C) 300 Hz (D) 8	πt+20sin300πt. The Nyquist rate is 400 Hz 300 Hz	
	i. for a DPSK Scheme, the bit error probabil (A) $0.5 \text{erfc} \sqrt{\text{Eb}/2000}$ (B) ((C) $0.5 \text{exp} (-\text{E}_b/\text{N}_0)$ (D) (ity is given by).5erfc√ Eb/4000).5exp (-E _b /2000)	
	j. The output signal of a matched filter proper autocorrelation function of input signal is (A) $x_o(t) = 2K/N_0 * R(t-\tau)$ (B) x (C) $x_o(t) = K/N_0 * R(-\tau)$ (D) x	prtional to a shifted version of represented as $x_0(t) = K/N_0 * R(t - \tau)$ $x_0(t) = K/2N_0 * R(t - \tau)$	
Answer any FIVE Questions out of EIGHT Questions Each question carries 16 marks			
Q.2	a. Enlist and explain types of communication	n channels.	(4)
	 b. Define the following terms:- (i) Mutual Information (ii) Entropy (iii) Channel Capacity (iv) Noise 		(4)
	c. A zero memory source emits seven messa with Probabilities 0.30, 0.25, 0.15, 0.12, 0 Huffman code for the source. Also find th same.	lges m_1 , m_2 , m_3 , m_4 , m_5 , m_6 and m_7).10, 0.08, 0.00 respectively. Obtain the efficiency and redundancy of the	(8)
Q.3	a. What are the Practical Difficulties in Sign for it with necessary diagrams.	al Reconstruction? Give remedies	(8)
	b. Explain Utility of Time Division Multipl	exing.	(4)
	c. A signal m(t) of bandwidth B = 4KHz is PCM with μ =100. Find SNR for L= 64 and	transmitted using a binary companded d L= 128.	(4)
Q.4	a. What are the advantages of DPCM? Expla DPCM transmitter and receiver. How SNF PCM.	ain with the help of neat sketches the R is improved in DPCM compared to	(8)
	b. Define Quantization and Quantization Quantization error.	error? Derive the expression for	(8)

ROLL NO. ___

Code	: A	AE67/AE118 Subject: DIGITAL COMMUNIC	ATIONS
Q.5	a.	Obtain PSD of NRZ uni-polar, NRZ-polar, and NRZ-bipolar. Compare and comments.	(8)
	b.	Explain followings with Examples. (i) Eye Diagram (ii) Timing Jitter	(8)
Q.6	a.	Compare BPSK and QPSK in tabular forms.	(4)
	b.	Write a note on: - M-ary modulation technique.	(6)
	c.	Explain with neat sketches digital modulation formats.	(6)
Q.7	a.	What is usefulness of GRAM-SCHMIDT Procedure? Explain the stepwise GRAM-SCHMIDT Procedure to construct orthogonal (orthonormal) set.	(8)
	b.	Explain in details maximum likelihood estimation.	(8)
Q.8	a.	What are the characteristic of spread spectrum signals? Explain with suitable diagrams frequency hopping spread spectrum techniques.	(10)
	b.	Define the following: (i) Processing Gain (ii) Chip rate (iii) PN sequence.	(3)
	c.	If the message signal bandwidth is 4 MHz, Processing Gain is 400, find out the spread spectrum signal bandwidth.	(3)
Q.9	a.	Write a technical note on "Applications of digital Modulation techniques".	(8)
	b.	Write a technical note on "Applications of Spread Spectrum techniques".	(8)

3