ROLL NO.

Code: AE65/AE116

Subject: ANALOG COMMUNICATIONS

AMIETE – ET (Current & New Scheme)

Time: 3 Hours

June 2018

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Q.1 Choose the correct or the best alternative in the following: (2×10)
 - a. The value of a resistor creating thermal noise is doubled. The noise power generated is therefore
 (A) Halved
 (B) Quadrupled
 - (C) Doubled (D) Unchanged
 - b. In a communication system, noise is more likely to affect the signal
 - (A) At the transmitter (B) In the channel
 - (C) In the information source (D) At the destination
 - c. If the carrier of a 100% modulated AM wave is suppressed, the percentage power saving will be

(A) 50%	(B) 150%
(C) 100%	(D) 66.66%

- d. A pre-emphasis circuit provides extra noise immunity by
 - (A) Boosting the bass frequencies
 - (**B**) Amplifying the higher audio frequencies
 - (C) Pre-amplifying the whole audio band
 - (D) Converting the phase modulation into Frequency Modulation
- e. A Frequency Modulated signal with a modulation index of m_f is passed through a frequency tripler. The wave in the output of the tripler will have a modulation index of

(A) $(m_f)/3$	(B) <i>^mf</i>
(C) 3m_f	(D) ^{9m} f

f. A super-heterodyne receiver with an intermediate frequency of 450 kHz is tuned to a signal at 1200 kHz. The image frequency is
(A) 750 kHz
(B) 900 kHz
(C) 1650 kHz
(D) 2100 kHz

1

Code: AE65/AE116

Subject: ANALOG COMMUNICATIONS

- g. Impedance inversion may be obtained with
 - (A) A short circuited stub
 - (C) A quarter wave line

- (B) An open circuited stub(D) A half wave line
- h. The wavelength of a wave in a waveguide
 (A) Is greater than in free space
 (B) Depends only on the waveguide dimensions and the free-space wavelength
 (C) Is inversely proportional to the phase velocity
 (D) Is directly proportional to the group velocity
- i. The biggest disadvantage of PCM is
 - (A) Its inability to handle analog signals
 - (B) The high error rate which its quantizing noise introduces
 - (C) Its incompatibility with TOM
 - (D) The large bandwidths that are required for it
- j. Satellites used for intercontinental communications are known as
 - (A) Comsat (B) Marisat
 - (C) Domsat (D) Intelsat

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. List the basic functions of a radio transmitter and the corresponding functions of the receiver.(8)
 - b. What are the different internal noises in the receiver? Explain in detail the Thermal noise. (8)
- Q.3 a. Derive a mathematical expression for the frequency spectrum of the Amplitude Modulated (AM) wave. Explain with neat diagram the bandwidth requirement and power relations of the AM wave.(8)
 - b. What is single side band suppressed carrier modulation? Explain its advantages with respect to ordinary Amplitude modulation. (8)
- Q.4 a. What is the difference between Frequency and Phase modulation? In an FM system, if m_f is doubled by halving the modulating frequency, what will be the effect on the maximum deviation? (8)
 - b. Explain in detail the advances of Frequency modulation over Amplitude modulation.

(8)

- Q.5 a. Explain the basic super-heterodyne principle with the aid of the block diagram of a simple receiver.
 (8)
 - b. Explain the factors influencing the choice of the intermediate frequency for a radio receiver. (8)

Code: AE65/AE116

Q.6	 a. Explain with neat sketches the concept of impedance inversion by a quarter – wave line. (8)
	b. Discuss the type of losses that may occur with RF transmission lines. (8)
Q.7	a. What are waveguides? What is the fundamental difference between propagation in waveguides and propagation in transmission lines or free space? (8)
	b. Describe various methods of coupling to cavity resonators. With the aid of a sketch, explain specifically how a cavity may be coupled to an electron beam. (8)
Q.8	a. State and prove Shannon – Hartley Theorem. (8)
	b. A 2-kHz channel has a signal-to-noise ratio of 24 dB. (4+4) (a) Calculate the maximum capacity of this channel.
	(b) Assuming constant transmitting power, calculate the maximum capacity when the channel bandwidth is
	ii. Reduced to a quarter of the original value.
Q.9	a. Show diagrammatically and with an explanation, how channels are combined into groups, and groups into super-groups, and so on, when FDM is generated in a practical

b. Explain the working of Microwave Communication link with the help of a suitable block diagram. (8)

system?

(8)

3