
Code: AE56/AC56/AT56/AE107/AC107/AT107 Subject: ENGINEERING MATHEMATICS - II

AMIETE – ET/CS/IT (Current & New Scheme)

1

	ROLL NO	
	Code: AE56/AC56/AT56/AE107/AC107/AT107 Subject: ENGINEERING MATHEMATICS - II	
	h. The differential equation formed by the equation $z = (x + a)(y + b)$ is	
	(A) $pq = z$ (B) $pz = q$ (C) $p = qz$ (D) $pq + z = 0$	
	i. An urn contains 10 black and 10 white ball. The probability of drawing two balls of same colour is	
	$\begin{array}{c} (A) \ {}^{9}/_{19} \\ (C) \ {}^{9}/_{20} \end{array} \qquad (B) \ {}^{8}/_{20} \\ (D) \text{ None of these} \end{array}$	
	j. The variance for a binomial distribution is	
	(A) np (B) \sqrt{np}	
	$(C) npq (D) \sqrt{npq}$	
Answer any FIVE questions out of EIGHT questions. Each question carries 16 marks.		
Q.2	a. Show that the function $u = \frac{1}{2} \log (x^2 + y^2)$ is harmonic. Find its harmonic conjugate.	(8)
	b. Examine the nature of the function $f(z) = \frac{x^2 y^5 (x + iy)}{x^4 + y^{10}}; z \neq 0, \qquad f(0) = 0$	
Q.3	a. Evaluate $\int_0^{2+i} (\bar{z})^2 dz$ along the real axis from $z = 0$ to $z = 2$ and then along a	(8) (8)
r	b. With the help of residue theorem, evaluate $\int_C \frac{z^2 - 2z}{(z+1)^2 (z^2+4)} dz$, where C is the circle $ z = 10$.	(8)
Q.4	a. If $u = x + y + z$, $v = x^2 + y^2 + z^2$, $w = xy + yz + zx$. Prove that grad u , grad v and grad w are coplanar vectors.	(8)
	b. Find the directional derivative of $\frac{1}{r}$ in the direction of \vec{r} , where $\vec{r} = xi + yj + zk$ and $r = \vec{r} $.	(8)
Q.5	a. Using Green's theorem, evaluate $\int_{C} (x^2 y dx + x^2 dy)$, where C is the boundary described counter clockwise of the triangle with vertices (0,0), (1,0), (1,1).	(8)
	b. If $\overrightarrow{F}(x, y, z) = x^3 i + yj + zk$ is the force field. Find the work done by \overrightarrow{F} along the line from $(1, 2, 3)$ to $(3, 5, 7)$.	(8)
Q.6	a. Find the polynomial $f(x)$ by using Lagrange's interpolation formula and hence find $f(3)$ from the following data	(8)
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

ROLL NO.

Code: AE56/AC56/AT56/AE107/AC107/AT107 Subject: ENGINEERING MATHEMATICS - II

- b. Evaluate the integral $\int_0^1 \frac{x^2}{1+x^3} dx$ by using Simpson's $1/3^{rd}$ rule. Compare the error with the exact value. Divide range in four equal parts. (8)
- Q.7 a. Solve the partial differential equation $p(x^2 y^2 z^2) + q \, 2xy = 2xz.$ (8)
 - b. Using Charpit's method, find the complete integral of pxy + pq + qy = yz. (8)
- Q.8 a. From a bag containing 5 white, 7 red and 4 black balls a man draws 3 at random, find the probability of being all white.(8)
 - b. A can hit a target 4 times in 5 shots; B three times in 4 shots; C twice in 3 shots. They fire a volley. What is the probability that they hit at least two shots. (8)
- **Q.9** a. If X is a continuous random variable with probability density function given by

$$f(x) = \begin{cases} kx & (0 \le x < 2) \\ 2k & (2 \le x < 4) \\ -kx + 6k & (4 \le x < 6) \end{cases}$$

Find k and mean value of X.

b. The probability that a pen manufactured by a company will be defective is $\frac{1}{10}$. If 12 such pens are manufactured, find the probability that

- (i) exactly two will be defective.
- (ii) at least two will be defective.
- (iii) none will be defective.

AE56/AC56/AT56/ AE107/AC107/AT107/JUNE-2018 (8)

(8)