ROLL NO.

Code: AE53/AC53/AT53/AE103 Subject: ELECTRONIC DEVICES & CIRCUITS

AMIETE – ET/CS/IT (Current & New Scheme)

Time: 3 Hours

June 2018

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

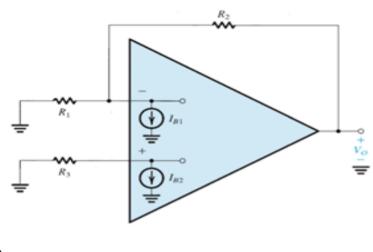
a. If 1 A current flows in a circuit, the number of electrons flowing through this circuit is (A) 0.625×10^{19} (B) 1.6×10^{19}

(A) 0.023×10	(D) 1.0×10
(C) 1.6×10^{-19}	(D) 0.625×10^{-19}

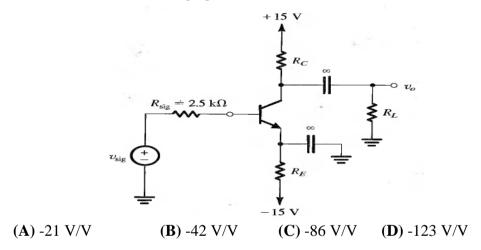
- b. The resistance of a conductor of diameter d and length l is R Ω. If the diameter of the conductor is halved and its length is doubled, the resistance will be
 (A) R ohm
 (B) 2R ohm
 (C) 4R ohm
 (D) 8R ohm
- c. A capacitor carries a charge of 0.1 C at 5 V. Its capacitance is

 (A) 0.02 F
 (B) 0.5 F
 (C) 0.05 F
 (D) 0.2 F
- d. A 9.1-V zener diode exhibits its nominal voltage at a test current of 28 mA. At this current the incremental resistance is specified as 5 Ω. Find V_{Z0} of the Zener model.
 (A) 8.06V

(A) 8.96V	(B) 9.03V
(C) 9.17V	(D) 9.24V

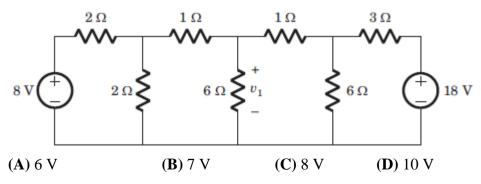

e. A shunt regulator utilizing a zener diode with an incremental resistance of 5 Ω is fed through an 82- Ω resistor. If the raw supply changes by 1.0 V, what is the corresponding change in the regulated output voltage?

(A) 72.7 mV	(B) 73.7 mV
(C) 74.7 mV	(D) 75.7 mV


f. The circuit is to operate at a temperature in the range 0°C to 75°C and the temperature coefficient of V_{OS} is 10 μV/°C?
(A) 8.5 mV
(B) 9 mV
(C) 9.5 mV
(D) 10 mV

Code: AE53/AC53/AT53/AE103 Subject: ELECTRONIC DEVICES & CIRCUITS

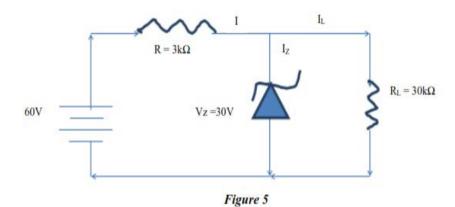
- g. Consider the circuit shown below which reduces the impact of the input bias current. If $I_{B1} = I_{B2} =$ Input bias current, then determine the value of R_3 so that the output voltage (v₀) is not impacted by the input bias current.
 - (A) (R1 R2)/(R1+R2)
 (B) (R1 R2)/(R1-R2)
 (C) R1-(R1 R2)/(R1+R2)
 (D) R2- (R1 R2)/(R1+R2)


h. The circuit shown below is applied with small sine wave signal having zero average. The transistor $\beta = 100$. For R(L) = 10 k Ω and transistor Ro = 200 k Ω , determine the overall voltage gain.

A battery has a short-circuit current of 30 A and an open circuit voltage of 24 V. If the battery is connected to an electric bulb of resistance 2 ohm, the power dissipated by the bulb is

(A) 80 W (B) 1800 W (C) 112.5 W (D) 228 W

j. For the following circuit, determine the value of v_1

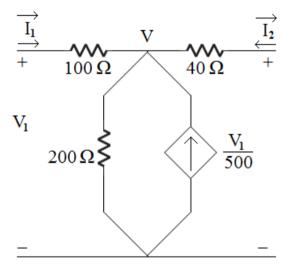


ROLL NO.

Code: AE53/AC53/AT53/AE103 Subject: ELECTRONIC DEVICES & CIRCUITS

Answer any FIVE Questions out of EIGHT Questions Each question carries 16 marks

- **Q.2** a. Define α_{dc} and β_{dc} of BJT. Derive the relation between these two parameters. (5)
 - **b.** A BJT with measured current levels of $I_C = 16mA$, $I_E = 16.04 \text{ mA}$ is replaced with another BJT which has $\beta_{dc} = 25$. Calculate the new level of I_C and I_E assuming that the base current remains constant. (5)
 - c. Why biasing is required in BJT circuit? Draw the circuit of different biasing arrangements available. (6)
- Q.3 a. Draw the circuits and the corresponding waveforms of half wave, bridge, centre tap full wave rectifiers and discuss the working principle of these circuits. (12)
 - b. What is transconductance? Prove $g_m = g_{mo} (I_D / I_{DSS})^{\frac{1}{2}}$, where the terms denote their original meaning. (4)
- **Q.4** a. Calculate the current through Zener diode if the load resistance $RL = 30 k\Omega$ for the circuit given below (Figure 5): (6)


- b. Calculate the resistivity of Si at 300K, if donor impurity to the extent of 1 part in 10⁸ atoms of Si is added, find the density of minority carriers and the resistivity.
- c. Explain the concept of Tunnel diode and Schottky Diode with the help of their I-V characteristic. (5)
- Q.5 a. Explain the concept of Cascade amplifier with the help of its circuit diagram. Also, define its applications. (8)
 - b. Explain working of single stage RC coupled amplifier. (8)

ROLL NO.

(8)

Code: AE53/AC53/AT53/AE103 Subject: ELECTRONIC DEVICES & CIRCUITS

- Q.6 a. Sketch the circuit diagram of a Class B push-pull power amplifier using transformer-coupling. Derive relation for its dc input power, ac output power and the efficiency.
 - b. Sketch Class A transformer coupled amplifier. In this circuit, if transistor used has power dissipation (PD) =10W. (i) What maximum signal output power it can produce under ideal conditions? (ii) If two such identical transistors are used in Class B push pull amplifier, what maximum signal output this transistor pair can produce under ideal condition? (8)
- Q.7 a. What are the basic laws of the Circuit Theory? On what principle are they based? (8)
 - b. Distinguish between natural and forced response of an RC Circuit.
 Determine the y-parameters of the network of figure given and then draw its equivalent circuit accordingly.
 (8)

- **Q.8** a. Draw and explain the operation of a Phase shift oscillator.
 - b. Draw the circuit of a Wien-bridge oscillator using Op-Amp and describe its working. Find an expression for the frequency of oscillation. (3+5)
- Q.9 a. Explain the various steps involved in IC fabrication. Explain ion implantation IC fabrication technique and also write its advantages. (4+4+2)
 - b. Explain the Oxidation and Photolithography process with diagram for device fabrication. (6)

(8)