ROLL NO.	
	_

Code: AC59/AT59/AC110/AT110 Subject: OPERATING SYSTEMS & SYSTEMS SOFTWARE

AMIETE – CS/IT (Current & New Scheme)

Time:	3 Hours	June 20	018	Max. Marks: 100
 Ime: 5 Hours June 2018 Max. Marks: 100 PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER. NOTE: There are 9 Questions in all. Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else. The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination. Out of the remaining EIGHT Questions, answer any FIVE Questions, selecting at least TWO questions from each part. Each question carries 16 marks. Any required data not explicitly given, may be suitably assumed and stated. 				
Q.1	 Choose the correct of a. The main function (A) to get and exe (B) to provide the (C) to handle the f (D) none of these 	or the best alternative of the command inte cute the next user-spe interface between the files in operating syste	ve in the follo rpreter is ecified comma e API and appl em	wing: (2×10) and lication program
	b. When the process(A) It is placed in(C) It is placed in	issues an I/O request an I/O queue the ready queue	: (B) It is plac (D) It is pla	ced in a waiting queue aced in the Job queue
 c. In the bakery algorithm to solve the critical section problem: (A) each process is put into a queue and picked up in an ordered manner (B) each process receives a number (may or may not be unique) and the one with the lowest number is served next (C) each process gets a unique number and the one with the highest number is served next (D) each process gets a unique number and the one with the lowest number is served next 				roblem: a an ordered manner be unique) and the one with with the highest number is with the lowest number is
	 d. Which one of the deadlock occurre (A) Resource all (C) inversion gr 	o following is a visual nce? ocation graph aph	(mathematica (B) s (D) n	al) way to determine the starvation graph none of these
	 e. Which one of th (A) random access (B) read bytes on (C) read/write sec (D) read/write random 	e following explains s according to the giv e at a time, in order quentially by record ndomly by record	the sequential ven byte numb	file access method? per

ROL	L N	0.	

Code: AC59/AT59/AC110/AT110 Subject: OPERATING SYSTEMS & SYSTEMS SOFTWARE

f. Load address for the first word of the program is called			
(A) Linker address origin	(B) Load address origin		
(C) Phase library	(D) Absolute library		
 g. Parsing is also known as (A) Lexical Analysis (C) Semantic Analysis 	(B) Syntax Analysis(D) Code Generation		
•			
h. Logical extension of computation migr	ration is		
(A) process migration	(B) system migration		
(C) thread migration	(D) data migration		
i. If there are 32 segments, each of size 1Kb, then the logical address should have :			
(A) 13 bits	(B) 14 bits		
(C) 15 bits	(D) 16 bits		
j. If the size of logical address space is 2 to the power of m, and a page size is 2 to			
the power of n addressing units, then the high order bits of a logical			
address designate the page number, and the low order bits designate the			
page offset.			
$(\mathbf{A}) \text{ III, fi} $	(\mathbf{D}) II, III (\mathbf{D}) m n n		
(C) III – II, III	(\mathbf{D}) III – II, II		

PART A (Operating Systems) Answer at least TWO questions. Each question carries 16 marks.

Q.2	a. What are Multiprocessor Systems? Explain different types of Multiprocess system & give their advantages?	(4)
	b. What is meant by Real time system? What are the types of Real time system the applications of real-time systems?	ms nd (4)
	c. What is threads and how it provides concurrency in application? How we implement threads in Kernel? What are the advantages of threads?	(8)
Q.3	a. How can deadlock be detected? Explain	(4)
	b. Write about the various CPU scheduling algorithms.	(4)

ROLL NO.	
----------	--

Code: AC59/AT59/AC110/AT110 Subject: OPERATING SYSTEMS & SYSTEMS SOFTWARE

c. Consider the following five processes, with the length of the CPU burst time given in Milliseconds.

-		
	Process	Burst time
	P1	10
	P2	29
	P3	3
	P4	7
	P5	12

Consider the First come First serve (FCFS), Non Preemptive Shortest Job First (SJF), Round Robin (RR) (quantum=10ms) scheduling algorithms. Illustrate the scheduling using Gantt chart. Which algorithm will give the minimum average waiting time? Discuss. (8)

Q.4 a. Explain Bakery Algorithm.

- b. What is the important feature of critical section? State the dining philosopher's problem and show how to allocate the several resources among several processes in a deadlock and starvation free manner? (4)
- c. How Disk Space Allocation is performed for creating or updating the file in the disk space? And how file sharing semantics works to access that files. (8)

Q.5 a. Explain the basic concepts of segmentation and paging.

- b. What is virtual memory? Mention its advantages.
 - c. Explain page replacement algorithms.

PART B (Systems Software) Answer at least TWO questions. Each question carries 16 marks.

Q.6	a. Explain in brief about language processing activity.	(8)
	b. What type of data structures are used for language processors?	(8)
Q.7	a. What is parsing? What are the approaches for parsing?	(4)
	b. Draw the parse tree and abstract syntax tree for the source string $a-b*c/d$.	(4)
	c. What is Macro Expansion? List the key notions concerning macro expansion. an algorithm to outline the macro-expansion using macro-expansion counter.	Write (8)
Q.8	a.What is assembler?	(3)
	b. Design the two-pass assembler.	(5)
	c. Describe data structure used for the assembler.	(8)
Q.9	a. What are the differences between Compiler and Interpreter?	(4)
	b. Explain the difference between Static and Dynamic Memory Allocation.	(4)
	c. Explain various parameter passing techniques.	(8)

(4)

(4)

(4)

(8)