ROLL NO.

Code: DE56/DE106

Subject: ANALOG ELECTRONICS

Diplete – ET (Current & New Scheme)

Time: 3 Hours

JUNE 2016

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes • of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- **O2 TO O8 CAN BE ATTEMPTED BY BOTH CURRENT AND NEW SCHEME** • STUDENTS.
- **Q9 HAS BEEN GIVEN INTERNAL OPTIONS FOR CURRENT SCHEME** • (CODE DE56) AND NEW SCHEME (CODE DE106) STUDENTS.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or the best alternative in the following: **Q.1**

 (2×10)

a. First layer in an IC is made up of . (A) P-type silicon substrate (C) Thin SiO₂ layer

(B) n-type material (**D**) An aluminium layer

b. The conversion formula for h_{ib} from CE h-parameters to CB h-parameters for h_{ib} is

(A) $h_{ib} \approx \frac{hie}{1+hoe}$	(B) $h_{ib} \approx \frac{hie}{1+hfe}$
(C) $h_{ib} \approx \frac{hie}{1-hfe}$	(D) $h_{ib} \approx \frac{hie}{1-hoe}$

c. The region of I_D/V_{DS} characteristics are called Pinch off region where

(A) I _D increases	(B) $I_D \& V_{DS}$ are both constant
(C) I_D is constant	(D) V_{DS} constant

d. Light intensity in an LED at a distance of 2m from a 10mcd source is

(A) 2.5 mlx	(B) 5.2 mls
(C) 3.4 mlx	(D) 4.3 mlx

e. How many basic terminals (input, output and supply terminals) are available in an op-amp?

(A) 3	(B) 4
(C) 5	(D) 6

1

Subject: ANALOG ELECTRONICS

f. One of the following is not a feature of an instrumentation amplifier.

(A) High gain(C) Low dc offset

(B) High CMRR(D) High Output impedance

g. Find V_O for the adder-subtractor circuit shown in Fig.1?

(A) 22.5 V	(B) –22.5 V
(C) 12.5 V	(D) –12.5 V

h. An audio amplifier operates in the frequency range of ______.

(A) 0 Hz to 20 Hz	(B) 20 Hz to 20 kHz
(C) 20 kHz to 200 kHz	(D) Above 200 kHz

i. Photo diode is used for the detection of

(A) Visible light	(B) Invisible light
(C) No light	(D) Both (A) and (B)

- j. Which one of the following Process is not used in the preparation of silicon wafers?
 (A) Crystal growth and doping
 (B) Ingot slicing
 - (C) Ingot trimming and grinding (D) Metallization

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Classify the integrated circuits according to digital ICs and analog ICs.	(4)
	b.	Explain the fabrication of complementary MOSFET with the help of neat diagrams.	(8)
	c.	Explain briefly the two types of plating techniques.	(4)
Q.3.	a.	Draw and analyze the circuit for transistor common base amplifier with voltage and current waveforms. Also mention equations for input impedance, output impedance, and voltage gain.	(12)
	b.	Give the comparison among CE, CC & CB circuits in terms of Z_i , Z_o , A_v , phase shift.	(4)

Code: DE56/DE106

a. Explain the operation of an N-channel JFET with the help of circuit diagram.

- Q.4. Indicate voltages and current directions. (8)
 - b. Draw and explain the operation of N-channel depletion enhancement MOSFET. (8)
- a. Explain the design aspects of transformer coupled amplifier. Q.5. (12)
 - b. List the applications of optocouplers and phototransistors. (4)
- a. Explain input bias current of an op-amp and derive an expression for Q.6. compensating resistor (R_{comp}). (10)
 - b. In the given op-amp circuit shown in Fig. 2 calculate: (6) (i) I_i (ii) V_o (iv) total current I_o when load of 25 k Ω is connected (iii)I_L

F	ig	2
1	15	• –

Q.7	a.	Draw the circuit of inverting summing amplifier for 2 inputs using op-amp and drive an expression for its output voltage.	(8)
	b.	Draw the circuit of half wave rectifier using op-amp and diode. Explain its operation.	(8)
Q.8	a.	Explain the operation of triangular wave generator with the help of circuit diagram and output waveform.	(8)
	b.	Draw the circuit of missing pulse detector using IC555 timer and explain its operation with the help of output waveforms.	(8)
Q.9	(F	or Current Scheme students i.e. DE56)	
	a.	Explain the functional block diagram of 723 regulator.	(8)
	b.	Explain R-2R ladder DAC with the help of neat diagrams.	(8)
Q.9	(F	or New Scheme students i.e. DE106)	
	a.	Explain the counter-type A/D converter with the help of suitable diagram and waveform.	(8)
	b.	Explain current limit protection regulator circuit.	(8)

Subject: ANALOG ELECTRONICS