ROLL NO.

Code: DE55/DC55 Subject: ENGINEERING MATHEMATICS - II

Diplete – Et/cs (Current Scheme)

Time: 3 Hours

JUNE 2016

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of • the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

a. Laplace transform of $\frac{\cos at - \cos bt}{t}$ is : (A) $\log \frac{s^2 + b^2}{s^2 + a^2}$ **(B)** $\frac{1}{2}\log \frac{s^2 + a^2}{s^2 + b^2}$ (**D**) $\log \frac{s+b}{s+a}$ (C) $\frac{1}{2}\log \frac{s^2 + b^2}{s^2 + a^2}$

b. The value of the limit $\lim_{x\to\infty} \frac{e^x}{r^3} =$

c. The constant term in the Fourier series for the function $f(x) = x^2$ in the interval $(-\pi,\pi)$ is :

	$(\mathbf{A}) \ \frac{\pi^2}{3}$	$(\mathbf{B}) \ \frac{\pi^3}{3}$
	(C) $\frac{2\pi^2}{3}$	$(\mathbf{D}) \ \frac{2\pi^3}{3}$
d.	The expression $e^{5+\frac{\pi i}{2}}$ in the form of	A+iB is :
	(A) $2-ie^2$ (C) $1-3e^{-3}$	(B) ie^5 (D) $1-4i$
e.	A particular integral of the different	ial equation

on $(D^2 + 4)y = x$ is : e

A) xe^{-2x}	(B)) $x\cos 2x$
$\mathbf{C}) x \sin 2x$	(D) $\frac{x}{4}$

DE55/DC55 / JUNE - 2016

(

ROLL NO.

Code: DE55/DC55 Subject: ENGINEERING MATHEMATICS - II

f. If a = 2i - j + k, b = i - 3j - 5k and c = 3i - 4j - 4k then $a \cdot (b \times c)$ is :

(A)
$$2i - 3j - k$$
 (B) $-3j - k$
(C) $-k$ (D) 0

- g. If $L{f(t)} = \overline{f}(s)$ then $L{e^{at}f(t)}$ is :
 - (A) $\bar{f}(s+a)$ (B) $\bar{f}(s-a)$ (C) $e^{as}\bar{f}(s)$ (D) $e^{-as}\bar{f}(s)$

h. If f is a function such that $\lim_{x\to 2} \frac{f(x) - f(2)}{x - 2} = 0$, which of the following must be true?

- (A) The limit of f(x) as x approaches 2 does not exist
- **(B)** f is not defined at x = 2
- (C) The derivative of f at x = 2 is zero
- **(D)** f is continuous at x = 0
- i. The solution of $(D^4 + 8D^2 + 16)y = 0$ is given by :
 - (A) $c_1 e^{2x} + c_2 e^{-2x} + c_3 e^x + c_4 e^{-x}$ (B) $(c_1 + c_2 x) e^{2x} + (c_3 + c_4 x) e^{-2x}$ (C) $(c_1 + c_2 x) \cosh 2x + (c_3 + c_4 x) \sinh 2x$ (D) $(c_1 + c_2 x) \sin 2x + (c_3 + c_4 x) \cos 2x$
- j. If a = 2i 3j k and b = i + 4j 2k then $(a + b) \times (a b)$ is :

(A) $-20i - 6j - 22k$	(B) $-22i+6j-2k$
(C) $20i + 16j - 22k$	(D) $-2i-6j-2k$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a. State Mean-Value theorem. Also verify it for the $f(x) = 2x^2 - 7x + 10$, $a = 2, b = 5$.	function (8)
Q.3	b. Expand $\tan^{-1} x$ in powers of x by Maclaurin's theorem. a. Evaluate $\int_{0}^{1} x^{4} (1-x^{2})^{\frac{5}{2}} dx$	(8) (8)
	b. Find the area of the segment cutoff from the parabola $y^2 = 2x$ by the line $y = 4x - 1$.	e straight (8)

Q.4 a. Prove that the points x + iy and $\frac{1}{-x + iy}$ lies on a straight line through the origin. (8)

b. If n is an integer then show that
$$(1+i)^n + (1-i)^n = 2^{\frac{n}{2}+1} \cos \frac{n\pi}{4}$$
. (8)

- Q.5 a. A, B, C, D are the points i-k, -i+2j, 2i-3k, 3i-2j-k respectively. Show that the projection of *AB* on *CD* is equal to that of *CD* on *AB*. Also find the cosine of their inclination. (8)
 - b. Find the cosine of the angle between the direction of the vectors a = 6i + 2j + 3k and b = 3i 2k. Also find a unit vector perpendicular to both *a* and *b*. (8)

Q.6 a. Solve the differential equation
$$(D^2 - 2D + 5)y = e^{2x} \sin x$$
 (8)

b. The deflection of a strut of length *b* with one end (x = 0) built-in and the other supported and subjected to end thrust *P*, satisfies the equation $\frac{d^2 y}{dx^2} + a^2 y = \frac{a^2 R}{P} (b - x).$ Prove that the deflection curve is $y = \frac{R}{P} \left[\frac{\sin ax}{a} - b\cos ax + b - x \right]$ where $ab = \tan ab$. (8)

Q.7 a. Find the Fourier series for the function
$$f(x) = \frac{\pi x}{\pi(2-x)}$$
 for $0 \le x < 1$
(8)

b. Develop
$$\sin \frac{\pi x}{l}$$
 in a half-range cosine series in the range $0 \le x \le l$. (8)

Q.8 a. Find Laplace transform of
$$\frac{1-\cos 2t}{t}$$
. (8)

b. Solve the following differential equation using Laplace transform :

$$\frac{d^2 y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t} \sin t \text{, given } y(0) = 0, y'(0) = 1$$
(8)

Q.9 a. Apply convolution theorem to evaluate
$$L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$$
 (8)

b. Find inverse Laplace transform of
$$\frac{(s+2)}{(s^2+4s+5)^2}$$
. (8)