ROLL NO. _

Code: DE107

Subject: NETWORKS AND TRANSMISSION LINES

Diplete – Et (NEW SCHEME)

Time: 3 Hours

JUNE 2016

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best alternative in the following:		
	 a. A parallel RLC circuit (R=1 ohm, L=1H, C=1F) is excited by a unit step current. The steady state current through L will be (A) Zero 		
	(C) 2/3 unit	(D) 1 unit	
	 b. The Laplace transform of the unit (A) s. (C) s e -s. 	 impulse is (B) 0. (D) 1. 	
	 c. Norton's theorem results in (A) Current source in parallel with an impedance (B) A current and an impedance in series (C) A voltage source only (D) A current source only 		
	 d. The VSWR lies in the range of (A) 0 to 1 (C) 0 to infinite 	(B) 1 to infinite (D) -1 to +1	
	e. A Smith Chart is used for solving(A) Radio wave propagation(C) Antenna system	problems in (B) Transmission line (D) Power transfer problems	
	f. The characteristics impedance of a(A) Real(C) capacitive	a distortion-less line is (B) inductive (D) complex	
	g. Thevenin's theorem is valid for a(A) Non-linear network(C) resistances	network containing only (B) linear elements (D) reactive elements	
	 h. A parallel resonant circuit can be (A) as a high impedance (B) to reject a small band of frequ (C) Both (A) and (B) (D) to amplify certain frequency 	used encies	

Code: DE107		Subject: NETWORKS AND TRANSMISSION L	INES			
	i. One neper is	equal to				
	(A) 0.8686 dl	b (B) 8.686 db				
	(C) 118.686 (db (\mathbf{D}) 86.86 db	. in			
J. When 5 equal resistances of 5 onm are connected in delta, what is the resistance in one of the arms of the equivalent star circuit						
	(A) 5 ohm	(B) 1.33 ohm				
	(C) 15 ohm	(D) 10 ohm				
	Answer any FIVE Questions out of EIGHT Questions.					
	F 1 '	Each question carries 16 marks.	(?)			
Q.2	a. Explain com	mon singularity functions.	(3)			
	b. Find the inverse Laplace transform of the following function (: s + 4					
	$F(s) = \frac{1}{2s^2 + 5s + 3}$					
	c. State and pro	ove Initial and Final value theorem.	(8)			
Q.3	a. State & prove	e π -T equivalent theorem.	(8)			
	b. A network fu	unction has a zero at 3 mega radians/sec and poles at 2 and 4 mega	ì-			
	radians/sec. I	It is required to give a driving point impedance of $+j$ 100 ohms at	1			
	network & th	be values of the elements.	er (8)			
Q.4	a. Find the relat	tionship between two-port Z, Y, h and ABCD parameters.	(8)			
C	b. Explain the a	application to the analysis of typical two-port networks.	(8)			
Q.5	a. Explain the circuit.	characteristic curves of series RLC & parallel RLC resonance	e (8)			
	b. A 100mH in	nductor with 500 ohm self resistance is in parallel with a 5n	F			
	capacitor. Fi	ind the resonance frequency of the combination. Sketch the	ie			
	variation of 1	mpedance with frequency.	(4) (4)			
06	c. Compare the	series & parallel resonance circuit. mission line equations & find its constants	(4) (8)			
Q.0	b A generator of	of 1 volt 1000Hz supplies power to 1000 km long open wire lir	(o)			
	terminated i	in Z_0 (Characteristic impedance) & having following parameters	:			
	R=10.4 ohms	s, L= 0.0037 henry, G= 0.8 micromhos, C= 0.00835 mfd	l.			
	Calculate the	b phase velocity, Characteristic impedance, propagation constant &	(8)			
0.7	a. Define reflect	ction and derive the relation for reflection coefficient.	(8)			
C	b. Derive expre	ession for Input Impedance of open and short circuited lines. Als	50			
	find secondar	ry line constants in terms of Z_{OC} & Z_{SC} .	(4+4)			
Q.8	a. Explain the bused as an ad	basis for construction of Smith chart. Illustrate as to how it can b Imittance chart.	e (10)			
	b. A lossless tra	ansmission line in air has a characteristic impedance of 300 ohm	IS			
	& is terminat	ted by unknown impedance. When the frequency is 200 Mhz, the	ie			
	load. Determ	nine the complex reflection co-efficient and terminating impedance	ie ce			
	of the line.		(6)			
Q.9	a. Define Band	pass filter and explain constant-k filter and m-derived filter.	(8)			
	b. Draw and exp	plain asymmetrical L and π attenuator.	(8)			

ROLL NO. _____