ROLL NO. _____

Code: DC54/DC104

Subject: DATA STRUCTURES

Diplete – CS {	Current &	& New	Scheme}
----------------	-----------	-------	---------

Time:	3 Hours	JUNE 2016	5	Max. Marks: 100	
PLEA IMMI	PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE OUESTION PAPER.				
NOTI • Qu th • Th th • Ou	E: There are 9 Quest lestion 1 is compulso e space provided for e answer sheet for the commencement of the of the remaining lestion carries 16 ma	ions in all. ory and carries 20 marks it in the answer book su- ne Q.1 will be collected by the examination. g EIGHT Questions an arks.	Answer pplied an y the invi swer an	to Q.1 must be written in d nowhere else. gilator after 45 minutes of y FIVE Questions. Each	
• An	y required data not	explicitly given, may be s	suitably a	ssumed and stated.	
Q.1	a is the (A) Recursion	t or the best alternative i process of sending a copy (B) F ference	n the foll of data to assing a v	owing: (2×10) o a program. value	
	b. The simplest dat (A) Linked List (C) Graph	a structure is(B) (D)	 Array Union		
	 c. Which is not a s (A) Radix sort (C) Poll sort 	orting technique? (B) (D) (D) (D)	Merge son Quick sort	t	
	 d. The Postfix form (A) a*(bc)d/- (C) abc-*d/ 	n for the expression a*(b-c (B) a (D))/d is: abcd*/- a(b-c)/d*		
	e. Which is true fo(A) Quick Inser(C) Fast Search	r the Linked List? tion (B) (ing (D) H	Juick Del 30th (A) ε	etion nd (B)	
	 f. A tree of depth numbered from (A) Complete E (C) Partial Bina 	k with n nodes in which to n is called Binary tree (B) F ary Tree (D) N	h these n Full Binary None of th	nodes can be sequentially y Tree lese	
	g. The complexity (A) $O(n^2)$ and $O(C) O(n^2)$ and $O(C) O(n^2)$	of Quick sort in average a (n ²) (B) ((nlogn) (D) (nd worst o)(nlogn) a)(logn) ar	case respectively is: and O(n ²) ad O(n)	
	 h. A stack data stru (A) Last In First (C) First In Last 	Incture exhibits theOut(B) FOut(D) I	pi irst In Fin Last In La	roperty. rst Out st Out	
	 i. Hashing is the d (A) O(n²) (C) O(1) 	irect technique that takes (B) (D)	nlogn logn ²	_time to find a data.	

ROLL NO. _

Code:	D	OC54/DC104 Subject	: DATA STRUCTURES		
	j.	Time required for generating all the connected compgraph G with n vertices and e edges is: $(A) O (en)$ $(C) O (e+n)$ $(D) O (e^2)$	onents of an undirected		
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.					
Q.2	a.	. Explain the following terms. Use suitable examples to (i) Static Storage (ii) External I (iii) Automatic Storage (iv) Recursion	illustrate each (8) References		
	b.	. Write a programme in C to find the sum of n elemen dynamic memory allocation function calloc().	nts entered by user using (8)		
Q.3	a.	. With the help of an example, explain in detail he structures.	w pointer is used with (6)		
	b.	. Describe the major operations involved while Readi file in C.	ng from or Writing to a (6)		
	c.	. Define structure? Explain how a structure can be dy language?	namically allocated in C (4)		
Q.4	a.	 What is searching? Suppose an array contains 2 minimum and maximum number of comparisons reusing: (i) Linear search (ii) Binary search 	048 elements, find the quired to locate an item (2+3)		
	b.	What is the minimum number of comparisons that Bu an array containing n elements?	bble Sort will do to sort (3)		
	c.	. Compare and contrast any four sorting techniques b and Computing time.	based on Memory Space (8)		
Q.5	a.	. Write the applications of Stacks and Queues.	(3+3)		
	b.	. Write a program in C for the implementation of stack (i) Linked List (ii) Array	using. (5+5)		
Q.6	a.	. Write a programme in C for inserting a node after a s linked list.	pecified node in a singly (8)		
	b.	. Explain in detail the concept of reversing a linked list	(8)		
Q.7	a.	. Write short notes on the following: (i) Circular linked lists (ii) Doubly linked	(4 + 4) I lists		
	b.	. Write a program in C to merge two circular linked list	s. (8)		
Q.8	a.	. Explain the following terms: (i) Order of traversal of Binary Tree (ii) Binary Se	(8) arch Tree (BST)		
	b.	. Explain how a node having two children/one child/ from a Binary Search Tree?	no child can be deleted (8)		
Q.9	a.	. Explain the Depth first spanning tree and Breadth examples to illustrate.	first spanning tree. Use (8)		
	b.	. Write short notes on the following: (i) Traversing a graph (ii) Minimum cost sr	(4 + 4) panning tree (MST)		