ROLL NO.

Code: CT32

Subject: COMPUTER NETWORKS

ALCCS

Time: 3 Hours

JUNE 2016

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
- **Q.1** a. Explain the evolutions and services of network architecture.
 - b. Explain the role of Polynomial Codes in error correction and detection.
 - c. Compare Go-Back-N ARQ and Selective Repeat ARQ protocols.
 - d. Mention the basic functions of transparent bridge used in LANs.
 - e. Explain Weighted Fair Queueing in traffic management at packet level.
 - f. Draw the format of TCP segment and label the fields with respective size.
 - g. Explain the role of checksums and hashes in cryptographic algorithms. (7×4)

Q.2 a. Explain TCP/IP architecture.

- b. Explain the frequency domain and time domain characteristics of communication channel. (6)
- c. Suppose we take the (7,4) Hamming code and obtain an (8,4) code by adding an overall parity check bit.
 - (i) Find the H matrix for this code.
 - (ii) What is the minimum distance?
 - (iii) Does the extra check bit increase the error-correction capability? (6)
- Q.3 a. Explain the connection-oriented transfer service and connectionless transfer service in peer-to-peer protocols. Give an illustration for each. (4+4)
 - b. Define Nyquist signalling rate and Shannon's channel capacity. (4)
 - c. Explain the following for HDLC protocol: (6)
 - (i) HDLC Transfer Modes
 - (ii) HDLC Frame Format

(6)

ROLL NO. __

Code: CT32

Q.4	a.	A telephone modem is used to connect a personal computer to a host computer. T speed of the modem is 56 kbps and the one-way propagation delay is 100 ms. (i) Find the efficiency for Stop-and-Wait ARQ if the frame size is 256 byt Assume a bit error rate of 10^{-4} . (ii) Find the efficiency of Go-Back-N if three-bit sequence numbering is used w frame sizes of 256 bytes. Assume a bit error rate of 10^{-4} .	"he es. ith (6)
	b.	Compare the scheduling approaches in MAC protocols.	(6)
	c.	Explain Distributed Coordination Function (DCF) and Point Coordination Function (PCF) in IEEE 802.11 standards.	on (6)
Q.5	a.	Explain the working mechanism of virtual-circuit packet switching. Mention to delay issues in virtual-circuit packet switching. (3+	the ⊦2)
	b.	Explain the traffic management in open-loop control and closed-loop control a packet-switched networks.	for (8)
	c.	Compare link state routing and distance vector routing methods in pack networks.	ket (5)
Q.6	a.	Derive the following terms for M/M/1 queues, with Poisson arrival process with ratio λ and exponential service time with mean service rate μ with one server (i) Average queue length (ii) Average Waiting time (iii) Little's Formula	ate
	b.	Explain Discrete Time Markov Chain.	(6)
	с.	Compare address resolution and reverse address resolution used in TCP/IP.	(6)
0.7	a.	Explain RSA algorithm and give its analysis.	(6)
L L	b.	Compare symmetric-key cryptography and asymmetric-key cryptography.	(6)
	c.	Draw the architecture of SMTP.	(6)