ROLL NO. _

Code: AE72/AE120 Subject: MICROWAVE THEORY AND TECHNIQUES

AMIETE – ET (Current & New Scheme)

the	e space provided for it in the	e answer book supplied and nowhere else.	
• The	e answer sheet for the Q.1 w	ill be collected by the invigilator after 45 m	inutes of
the	e commencement of the exam	nination.	
• Ou	t of the remaining EIGH estion carries 16 marks	I Questions answer any FIVE Question	is. Each
• An	v required data not explicit	y given, may be suitably assumed and state	d.
• Sm	ith chart to be provided to t	he students on demand.	
Q.1	Choose the correct or the be	est alternative in the following.	(2×10
	a. The time required for the	e wave to travel $2m$ of length of line for L=10	ıH/m
	and C=30pf/m.		
	(A) 20ns	(B) 34.64ns	
	(C) 2.01ns	(D) 3.47ns	
	b. The return loss at port 2	is +40dB. Then reflection coefficient at the po	ort is
	(A) 0.01	(B) 0.1	
	$(\mathbf{C}) 100$	(D) 10	
	c. Directivity of directional	coupler is	
	(A) Coupled power	(B) Bark gower	
	(C) Instdent power	(D) Coupled power	
	Coupled power	Incident gower	
	a. If M type tubes (\mathbf{A}) DC magnetic field is	parallel to DC electric field	
	(B) There is only dc mag	metic field.	
	(C) DC magnetic field is	perpendicular to DC electric field.	
	(D) There is only DC ele	etric field.	
	e. Micro strip line supports		
	(A) TE	(B) TM	
	(C) Quasi TEM	(D) TEM	
	f. Wavelength of EM wave	e in the Micro strip line is	
	(A) $C_{f\mathcal{E}_{aff}}$	(B) $C_{f \mathcal{E}_r}$	
	$(\mathbf{O}) \mathbf{C}$		
	(C) $\int f \sqrt{\varepsilon_r}$	(D) $\int f_{\sqrt{\varepsilon_{eff}}}$	
	σ If S = 3 and Zo=250O t	hen maximum impedance on transmission lin	e is
	(A) 150Ω	(B) 750Ω	
	(C) 83.33Ω	$(\mathbf{D}) 250\Omega$	
	h. If S=1 then magnitude of	f reflection coefficient is	
	(A) Infinity	(B) 1	
	(C) –1	(D) Zero	
	i The maximum electronic	efficiency of reflex Klystron is	
	(A) 23 7%	(B) 22 7%	

ROLL NO. ___

Code: AE72/AE120 Subject: MICROWAVE THEORY AND TECHNIQUES

	j.	The mean length L between the continuities of bends and twists should be		
		(A) $L = (2n+1) \lambda_g/4$ (B) $L = (2n+1) \lambda_g/2$ (C) $I = (2n+1) \lambda_g$ (D) $(2n+1) \lambda_g/8$		
Answer any FIVE Questions out of EIGHT Questions.				
Each question carries 16 marks.				
Q.2	a.	Draw the elementary section of transmission line and derive the expression for line equations.	(8)	
	b.	 Transmission line of length 0.32λ is terminated in load of (90+j60) Ω, have characteristic impedance 75Ω. Find the following using smith chart (i) Voltage Standing Wave Ratio (ii) Reflection coefficient at load (iii) Input impedance (iv) Distance of first voltage maximum from load (v) Distance of first voltage minimum from load (vi) Return loss 	(8)	
Q.3	a.	Applying Maxwell's equations derive the TE_{mn} field equations in Rectangular wave guide.	(10)	
	b.	Dominant TE10 mode is propagated through a rectangular wave guide of breadth 10 cm operating at 2.5GHz frequency. Find(i) Cutoff wavelength(ii) Phase velocity(iii) Group velocity(iv) Guide wavelength(v) Wave impedance(v) Guide wavelength	(6)	
Q.4	a.	Define microwave circulator. With neat diagram explain the working of four port circulator using two magic tees.	(8)	
	b.	Obtain the S-matrix of a four port Hybrid T-network.	(8)	
Q.5	a.	With neat energy band diagram, explain Ridley-Watkins-Hilsum (RWH) theory in GUNN diode.	(8)	
	b.	Draw the equivalent circuit of a parametric amplifier and explain the parametric up-conversion and down- conversion.	(8)	
Q.6	a.	With neat schematic and applegate diagram, explain the working of Reflex Klystron.	(10)	
	b.	A TWT operates under the following parameters: Beam Voltage Vo=3KV, Beam current Io=30mA, characteristic impedance of helix Zo=10Ω, circuit length N=50, Operating Frequency=10GHz. Determine (i) The gain parameter C. (ii) The output power gain A, in dB	(6)	
Q.7	a.	Compare linear beam tubes with cross field tubes. Derive the expression for Hull cutoff voltage in Cylindrical Magnetron.	(10)	
	b.	A linear Magnetron has the following operation parameters: Anode voltage Vo=15KV, cathode current Io=1.2A, operating frequency F= 8GHz, magnetic flux density Bo= 0.015 wb/m ² , hub thickness h=2.77cm, distance between the anode and cathode d=5cm. Calculate (i) The electron velocity of the hub (ii) Phase velocity for synchronizing surface		
		(III) THE FLATE ABOUE VOILAGE.	(0)	

1

Code: AE72/AE120 Subject: MICROWAVE THEORY AND TECHNIQUES

Q.8	a.	. Draw the schematic diagram and field pattern of micro strip line. Write the expression for characteristic impedance of micro strip line and mention the limitations of the equation.	
	b.	A lossless parallel strip line has a conducting strip width w. The substrate dielectric separating the two conducting strips has a relative dielectric constant ε_{rel} of 6 and a thickness d of 4mm.Calculate (i) The required width w of the conducting strip in order to have a characteristic impedance of 50 Ω . (ii) The strip line capacitance. (iii) The strip line inductance	
		(iv) The phase velocity of the wave in the parallel strip line.	(8)
Q.9	a.	Mention the properties of dielectric and resistive materials used in MMIC's.	(6)
	b.	Explain the different techniques used in fabrication of MMIC.	(10)